Overall Statistics
Total Trades
68
Average Win
11.23%
Average Loss
-0.16%
Compounding Annual Return
7.875%
Drawdown
12.700%
Expectancy
2.615
Net Profit
7.875%
Sharpe Ratio
0.548
Loss Rate
95%
Win Rate
5%
Profit-Loss Ratio
71.31
Alpha
0.144
Beta
-4.58
Annual Standard Deviation
0.127
Annual Variance
0.016
Information Ratio
0.42
Tracking Error
0.127
Treynor Ratio
-0.015
Total Fees
$138.08
from math import ceil,floor
from datetime import datetime
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from QuantConnect.Data.UniverseSelection import *

class TrendFollowingAlgorithm(QCAlgorithm):
    

    def Initialize(self):
        self.SetStartDate(2015, 1, 1)  
        self.SetEndDate(2016, 1, 1)
        self.SetCash(100000) 
        self.reb = 1
        self.symbols = None
        self.lookback = 252/2
        self.profittake = 1.96 # 95% bollinger band
        self.maxlever = 0.9 # always hold 10% Cash
        self.AddEquity("SPY", Resolution.Minute)
        self.multiple = 5.0 # 1% of annual return translate to what weight e.g. 5%
            
        self.PctDailyVolatilityTarget = 0.025 # target daily vol target in %
        self.UniverseSettings.Resolution = Resolution.Daily
        self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
        
        self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.universe))
        self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 10), Action(self.trail_stop))
        self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 28), Action(self.regression))
        self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 30), Action(self.trade))
        

    def OnData(self, data):
        pass

    def calc_vol_scalar(self):
        # df_price = pd.DataFrame(self.price, columns=self.price.keys()) 
        df_price = pd.DataFrame(dict([ (key,pd.Series(value)) for key, value in self.price.iteritems() ]))
        rets = np.log(df_price).diff().dropna()
        lock_value = df_price.iloc[-1]
        price_vol = self.calc_std(rets)
    
        volatility_scalar = self.PctDailyVolatilityTarget / price_vol
        return volatility_scalar
    
    def calc_std(self, returns):
        downside_only = False
        if (downside_only):
            returns = returns.copy()
            returns[returns > 0.0] = np.nan
        # Exponentially-weighted moving std
        b = returns.ewm(halflife=20, ignore_na=True, min_periods=0, adjust=True).std(bias=False).dropna() 
        return b.iloc[-1] 
    
    def regression(self):
        if self.symbols is None: return
        history = self.History(self.symbols, self.lookback, Resolution.Daily)
        current = self.History(self.symbols, 28, Resolution.Minute)

        self.price = {}
     
        for symbol in self.symbols:
            self.price[symbol.Value] = list(history.loc[str(symbol)]['open'])
            self.price[symbol.Value].append(current.loc[str(symbol)]['open'][0])

        A = range( self.lookback + 1 )
        for symbol in self.symbols:
            # volatility
            std = np.std(self.price[symbol.Value])
            # Price points to run regression
            Y = self.price[symbol.Value]
            # Add column of ones so we get intercept
            X = np.column_stack([np.ones(len(A)), A])
            if len(X) != len(Y):
                length = min(len(X), len(Y))
                X = X[-length:]
                Y = Y[-length:]
                A = A[-length:]
            # Creating Model
            reg = LinearRegression()
            # Fitting training data
            
            reg = reg.fit(X, Y)
            # run linear regression y = ax + b
            b = reg.intercept_
            a = reg.coef_[1]
            
            # Normalized slope
            slope = a / b *252.0
            # Currently how far away from regression line
            delta = Y - (np.dot(a, A) + b)
            # Don't trade if the slope is near flat (at least %7 growth per year to trade)
            slope_min = 0.252
            
            # Long but slope turns down, then exit
            if symbol.weight > 0 and slope < 0:
                symbol.weight = 0
                
            # short but slope turns upward, then exit
            if symbol.weight < 0 and slope < 0:
                symbol.weight = 0
                
            # Trend is up
            if slope > slope_min:
                
                # price crosses the regression line
                if delta[-1] > 0 and delta[-2] < 0 and symbol.weight == 0:
                    symbol.stopprice = None
                    symbol.weight = slope
                # Profit take, reaches the top of 95% bollinger band
                if delta[-1] > self.profittake * std and symbol.weight > 0:
                    symbol.weight = 0
            
            # Trend is down
            if slope < -slope_min:
          
                # price crosses the regression line
                if delta[-1] < 0 and delta[-2] > 0 and symbol.weight == 0:
                    symbol.stopprice = None
                    symbol.weight = slope
                # profit take, reaches the top of 95% bollinger band
                if delta[-1] < self.profittake * std and symbol.weight < 0:
                    symbol.weight = 0
                
    
    def trade(self):
        if self.symbols is None: return
        vol_mult = self.calc_vol_scalar()
        no_positions = 0
        for symbol in self.symbols:
            if symbol.weight != 0:
              no_positions += 1
        for symbol in self.symbols:
            if symbol.weight == 0:
                self.SetHoldings(symbol, 0)
            elif symbol.weight > 0:
                self.SetHoldings(symbol, (min(symbol.weight * self.multiple, self.maxlever)/no_positions)*vol_mult[symbol.Value])
            elif symbol.weight < 0:
                self.SetHoldings(symbol, (max(symbol.weight * self.multiple, -self.maxlever)/no_positions)*vol_mult[symbol.Value])

    def trail_stop(self):
        if self.symbols is None: return
    
        hist = self.History(self.symbols, 3, Resolution.Daily)

        for symbol in self.symbols:
            mean_price = (hist.loc[str(symbol)]['close']).mean()
            # Stop loss percentage is the return over the lookback period
            stoploss = abs(symbol.weight * self.lookback / 252.0) + 1    # percent change per period
            if symbol.weight > 0:
                if symbol.stopprice < 0:
                    symbol.stopprice = mean_price / stoploss
                else:
                    symbol.stopprice = max(mean_price / stoploss, symbol.stopprice)
                    if mean_price < symbol.stopprice:
                        symbol.weight = 0
                        self.Liquidate(symbol)
            
            elif symbol.weight < 0: 
                if symbol.stopprice < 0:
                    symbol.stopprice = mean_price * stoploss
                else:
                    symbol.stopprice = min(mean_price * stoploss, symbol.stopprice)
                    if mean_price > symbol.stopprice:
                      symbol.weight = 0
                      self.Liquidate(symbol)
            
            else:
                symbol.stopprice = None
            
        
    # def load_symbols(self) :
    #     self.equities = [
    #         # Equity
    #         'DIA',    # Dow
    #         'SPY',    # S&P 500
    #     ]
    #     self.fixedincome = [
    #         # Fixed income
    #         'IEF',    # Treasury Bond
    #         'HYG',    # High yield bond
    #     ]
    #     self.alternative = [
    #         'USO',    # Oil
    #         'GLD',    # Gold
    #         'VNQ',    # US Real Estate
    #         'RWX',    # Dow Jones Global ex-U.S. Select Real Estate Securities Index
    #         'UNG',    # Natual gas
    #         'DBA',    # Agriculture
    #     ]
    #     syl_list = self.equities + self.fixedincome + self.alternative
        
    #     self.symbols = []
    #     for i in syl_list:
    #         self.symbols.append(self.AddEquity(i, Resolution.Minute).Symbol)
            
            
    def CoarseSelectionFunction(self, coarse):
        
        if self.reb != 1:
            return []
        # sort descending by daily dollar volume
        sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
        

        # return the symbol objects of the top entries from our sorted collection
        return [ x.Symbol for x in sortedByDollarVolume[:8] ]

    # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
    def FineSelectionFunction(self, fine):
        
        if self.reb != 1:
            return []
            
        self.reb = 0
        
        # sort descending by P/E ratio
        syl_list = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True)
        self.symbols = [ x.Symbol for x in syl_list[:5]]
        self.Log("The candidate universe: " + str([i.Value for i in self.symbols]))
        # initialize the weight and stopprice of the symbo object
        for symbol in self.symbols:
            symbol.weight = 0
            symbol.stopprice = None
        


        return self.symbols
    
    def universe(self):

        self.reb = 1

        return