Overall Statistics |
Total Trades 21175 Average Win 0.08% Average Loss -0.07% Compounding Annual Return 33.765% Drawdown 25.700% Expectancy 0.464 Net Profit 4328.336% Sharpe Ratio 1.322 Probabilistic Sharpe Ratio 72.859% Loss Rate 29% Win Rate 71% Profit-Loss Ratio 1.07 Alpha 0.282 Beta 0.232 Annual Standard Deviation 0.231 Annual Variance 0.053 Information Ratio 0.769 Tracking Error 0.268 Treynor Ratio 1.313 Total Fees $33400.31 |
''' Intersection of ROC comparison using OUT_DAY approach by Vladimir v1.1 (diversified static lists) inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang. https://www.quantconnect.com/forum/discussion/10246/intersection-of-roc-comparison-using-out-day-approach/p1/comment-29043 MikoM version that dynamically selects top momentum stocks modified by Vladimir ''' import numpy as np # ------------------------------------------------------------------------------------------------ BONDS = ['TLT','TLH']; VOLA = 126; BASE_RET = 85; DV_N = 1000; RETURN = 252; R_N = 10; LEV = 0.99; # ------------------------------------------------------------------------------------------------ class ROC_Comparison_IN_OUT(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) self.SetEndDate(2021, 1, 7) self.InitCash = 100000 self.SetCash(self.InitCash) self.MKT = self.AddEquity("SPY", Resolution.Hour).Symbol self.mkt = [] self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) res = Resolution.Hour self.STOCKS = [] # Selected using the universe selection self.UniverseSettings.Resolution = res self.BONDS = [self.AddEquity(ticker, res).Symbol for ticker in BONDS] self.SLV = self.AddEquity('SLV', res).Symbol self.GLD = self.AddEquity('GLD', res).Symbol self.XLI = self.AddEquity('XLI', res).Symbol self.XLU = self.AddEquity('XLU', res).Symbol self.DBB = self.AddEquity('DBB', res).Symbol self.UUP = self.AddEquity('UUP', res).Symbol self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP] self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.coarseSelector, self.fineSelector)) self.UniverseSettings.Resolution = Resolution.Minute self.bull = 1 self.count = 0 self.outday = 0 self.wt = {} self.real_wt = {} self.universeMonth = -1 self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 60), self.daily_check) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120), self.trade) symbols = [self.MKT] + self.pairs for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, VOLA + 1, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(VOLA + 1):] def daily_check(self): vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252) wait_days = int(vola * BASE_RET) period = int((1.0 - vola) * BASE_RET) r = self.history.pct_change(period).iloc[-1] exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP])) if exit: self.bull = 0 self.outday = self.count if self.count >= self.outday + wait_days: self.bull = 1 self.count += 1 def coarseSelector(self, coarse): if self.Time.month == self.universeMonth: return self.STOCKS eqs = [x for x in coarse if (x.HasFundamentalData == True)] dollar_volume_sorted = sorted(eqs, key=lambda x: x.DollarVolume, reverse = True) # Top N in stock DollarVolume top = dollar_volume_sorted[:DV_N] top_eqs = [x.Symbol for x in top] return top_eqs def fineSelector(self, fine): if self.Time.month == self.universeMonth: return self.STOCKS # No idea what class fine is, len or shape do not work fineLen = 0 for i in fine: fineLen += 1 tech = [x for x in fine if x.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology] selected_symbols = [str(x.Symbol) for x in tech] hist = self.History(selected_symbols, RETURN + 1, Resolution.Daily) o = hist['open'].unstack(level=0) # Pure Profit scores = o.ix[-1] / o.ix[0] - 1. # Sharpe # scores = (o.ix[-1] / o.ix[0] - 1.) / o.std() top_eqs = scores.sort_values(ascending=False)[:R_N] self.STOCKS = [self.Symbol(str(x)) for x in top_eqs.index] self.universeMonth = self.Time.month return self.STOCKS def trade(self): # Delete non-tradable stocks for sym in self.STOCKS: if self.Securities[sym].IsTradable == False: del self.Securities[sym] # Set all non-selected stocks as zero for pi in self.Portfolio.Values: eq = self.Symbol(str(pi.Symbol)) if eq not in self.STOCKS: self.wt[eq] = 0. for sec in self.STOCKS: self.wt[sec] = LEV/len(self.STOCKS) if self.bull else 0; for sec in self.BONDS: self.wt[sec] = 0 if self.bull else LEV/len(self.BONDS); for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) for sec, weight in self.wt.items(): if weight != 0: self.SetHoldings(sec, weight) def OnEndOfDay(self): mkt_price = self.Securities[self.MKT].Close self.mkt.append(mkt_price) mkt_perf = self.InitCash * self.mkt[-1] / self.mkt[0] self.Plot('Strategy Equity', self.MKT, mkt_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 2)) self.Plot('Holdings', 'Target Leverage', LEV)