Overall Statistics |
Total Trades 62 Average Win 0.83% Average Loss -0.23% Compounding Annual Return -68.230% Drawdown 6.900% Expectancy -0.700 Net Profit -5.399% Sharpe Ratio -5.042 Probabilistic Sharpe Ratio 0.130% Loss Rate 94% Win Rate 6% Profit-Loss Ratio 3.65 Alpha -0.765 Beta 0.107 Annual Standard Deviation 0.13 Annual Variance 0.017 Information Ratio -6.913 Tracking Error 0.242 Treynor Ratio -6.131 Total Fees $128.75 |
import decimal as d import numpy as np import pandas as pd import math import datetime from QuantConnect.Orders import * from datetime import datetime import json from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") import pytz, datetime from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Portfolio import PortfolioTarget from QuantConnect.Algorithm.Framework.Risk import RiskManagementModel class DropboxBaseDataUniverseSelectionAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2020,5,11) self.SetEndDate(2020,5,28) self.sl = 20 self.tp = 40 self.tomorrow = {} self.SetCash(100000) # add equity tickers to the universe (before the market open of each trading day) self.UniverseSettings.Resolution = Resolution.Minute; self.AddUniverse(StockDataSource, "my-stock-data-source", self.stockDataSource) self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw self.SetWarmUp(4000) self.thesymbols = [] self.buyorsells = [] self.strikes = [] self.putorcalls = [] self.symbols = [] self.expiries = [] self.csvRowsBySymbol = {} # set schedule to liquidate at 10 minutes prior to the market close of each trading day #spy.SetDataNormalizationMode(DataNormalizationMode.Raw) self.SetRiskManagement(TrailingStopRiskManagementModel(1)) self.SetRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(0.5)) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.2)) self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage) def stockDataSource(self, data): # This will grab for each date the different tickers in the csv and add them to the universe list = [] try: for item in data: if ' ' not in item['Symbols']: list.append(item['Symbols']) self.symbols.append(item['Symbols']) self.csvRowsBySymbol[item['Symbols']] = item except: abc=123 return list def OnData(self, data): option_invested = [x.Key for x in self.Portfolio if x.Value.Invested and x.Value.Type==SecurityType.Option] option_price = {} yesterday = (self.UtcTime.date() - timedelta(days=1)) if yesterday in list(self.tomorrow.keys()): for symbol2 in self.tomorrow[yesterday]: if symbol2 not in self.symbols: self.symbols.append(symbol2) for symbol in data.Keys: if symbol.Value in self.symbols: # Add newly invested securities first_ticker = symbol.Value.split(' ')[0] if symbol in option_invested and first_ticker not in self.thesymbols: # False self.symbols.remove(first_ticker) self.thesymbols.append(first_ticker) if symbol.SecurityType == 1: #Selecting only stocks invested = [option for option in option_invested if option.Underlying == symbol] # Get invested option for this underlying symbol # Empty if symbol.Value not in self.thesymbols and symbol.Value in self.symbols: # True symsym = symbol.Value if ' ' not in symsym: # True stk = self.AddEquity(symsym, Resolution.Minute) stk.SetDataNormalizationMode(DataNormalizationMode.Raw) contracts = self.OptionChainProvider.GetOptionContractList(symbol, self.Time.date()) # Get list of strikes and expiries self.TradeOptions(contracts, symsym) # Select the right strikes/expiries and trade def TradeOptions(self, contracts, ticker): # run CoarseSelection method and get a list of contracts expire within 15 days from now on # and the strike price between rank -1 to rank 1, rank being the step of the contract exp = datetime.datetime.strptime(self.csvRowsBySymbol[ticker]['Expiries'] + '/2020', "%m/%d/%Y") exp = exp.date() today = self.UtcTime.date() future = exp diff = future - today filtered_contracts = self.CoarseSelection(ticker, contracts, -1, 1, diff.days, diff.days+1) # set min_expiry as 1 would avoid trading the contract that expires on the same day if len(filtered_contracts) == 0: self.symbols.remove(ticker) self.thesymbols.append(ticker) return expiry = sorted(filtered_contracts,key = lambda x: x.ID.Date, reverse=False)[0].ID.Date # Take the closest expiry # filter the call options from the contracts expire on that date call = [i for i in filtered_contracts if i.ID.Date == expiry and i.ID.OptionRight == 0] # sorted the contracts according to their strike prices call_contracts = sorted(call,key = lambda x: x.ID.StrikePrice) self.call = call_contracts[0] for i in filtered_contracts: if i.ID.Date == expiry and i.ID.OptionRight == 1 and i.ID.StrikePrice ==call_contracts[0].ID.StrikePrice: self.put = i ''' Before trading the specific contract, you need to add this option contract AddOptionContract starts a subscription for the requested contract symbol ''' # self.call is the symbol of a contract callContract = self.AddOptionContract(self.call, Resolution.Minute) putContract = self.AddOptionContract(self.put, Resolution.Minute) buyorsell = self.csvRowsBySymbol[ticker]['BuyorSell'] putorcall = self.csvRowsBySymbol[ticker]['PutorCall'] if putorcall == 'C': amt2 = self.Securities[self.call].Price if amt2 == 0: return amt = (self.Portfolio.MarginRemaining / 10000) / amt2 amt = int(amt) if amt == 0: return if buyorsell == 'sell': amt = amt * -1 callSymbol = self.call.Value.split(' ')[0] if callSymbol not in self.thesymbols and callSymbol in self.symbols: o = self.MarketOrder(self.call.Value, amt) self.thesymbols.append(callSymbol) self.symbols.remove(callSymbol) if (self.UtcTime.date()) not in list(self.tomorrow.keys()): self.tomorrow[(self.UtcTime.date())] = [] self.tomorrow[(self.UtcTime.date())].append(callSymbol) if putorcall == 'P': amt2 = self.Securities[self.put].Price * -1 if amt2 == 0: return amt = (self.Portfolio.MarginRemaining / 10000) / amt2 amt = int(amt) if amt == 0: return if buyorsell == 'sell': amt = amt * -1 if self.put.Value.split(' ')[0] not in self.thesymbols and self.put.Value.split(' ')[0] in self.symbols: o = self.MarketOrder(self.put.Value, amt) if (self.UtcTime.date()) not in list(self.tomorrow.keys()): self.tomorrow[(self.UtcTime.date())] = [] self.tomorrow[(self.UtcTime.date())].append(self.put.Value.split(' ')[0]) self.thesymbols.append(self.put.Value.split(' ')[0]) self.symbols.remove(self.put.Value.split(' ')[0]) def CoarseSelection(self, underlyingsymbol, symbol_list, min_strike_rank, max_strike_rank, min_expiry, max_expiry): ''' This method implements the coarse selection of option contracts according to the range of strike price and the expiration date, this function will help you better choose the options of different moneyness ''' # filter the contracts based on the expiry range contract_list = [i for i in symbol_list if min_expiry <= (i.ID.Date.date() - self.Time.date()).days <= max_expiry] # find the strike price of ATM option # It seems like sometimes OptionChainProvider.GetOptionContractList is bugging and returns nothing, so let's try/except min_strike = float(self.csvRowsBySymbol[underlyingsymbol]['Strikes']) max_strike = min_strike # filter the contracts based on the range of the strike price rank availstrikes = [i.ID.StrikePrice for i in contract_list] self.Log(f"Requested strike available for {underlyingsymbol}: {str(min_strike in availstrikes)}") filtered_contracts = [i for i in contract_list if i.ID.StrikePrice >= min_strike and i.ID.StrikePrice <= max_strike] return filtered_contracts class StockDataSource(PythonData): def GetSource(self, config, date, isLiveMode): url = "https://www.dropbox.com/s/eh1v7arvvojee3d/test_replaced.csv?dl=1" return SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile) def Reader(self, config, line, date, isLiveMode): #if not (line.strip() and line[0].isdigit()): return None stocks = StockDataSource() stocks.Symbol = config.Symbol csv = line.split(',') # rstrip is essential because quantconnect throws an empty element error (extra commas at the end of the csv) stocks.Time = datetime.datetime.strptime(csv[0].replace('"','').replace('"',''), "%Y-%m-%d %H:%M:%S") stocks["Symbols"] = csv[3] stocks["BuyorSell"] = csv[1] stocks["PutorCall"] = csv[2] stocks["Expiries"] = csv[6] stocks["Strikes"] = csv[4] return stocks