Overall Statistics |
Total Trades 2839 Average Win 0.77% Average Loss -0.58% Compounding Annual Return 31.257% Drawdown 36.600% Expectancy 0.414 Net Profit 1421.211% Sharpe Ratio 1.216 Loss Rate 39% Win Rate 61% Profit-Loss Ratio 1.32 Alpha 0.118 Beta 1.208 Annual Standard Deviation 0.236 Annual Variance 0.056 Information Ratio 0.914 Tracking Error 0.161 Treynor Ratio 0.238 Total Fees $17166.55 |
import math import numpy as np import pandas as pd import statsmodels.api as sm from datetime import date, datetime, timedelta from scipy import stats ### To do: # 1. try smaller volume universe, it seems to have good performance # 2. class ExpectedIdiosyncraticSkewness(QCAlgorithm): '''Step 1. Calculating Fama-French daily regression residuals Step 2. Using daily residuals to calculate historical monthly moments Step 3. Run regression of historical monthly moments to estimate regression coefficients Step 4. Using historical monthly moments and estimated coefficients to calculate expected skewness Step 5. Sorting symbols by skewness and long the ones with lowest skewness Note: Fama-French factors data are only available up to 06/28/2019. So, backtest is implemented up to end of June, 2019. And, live trading is not feasible for current version. Reference: [1] https://academic.oup.com/rfs/article-abstract/23/1/169/1578688?redirectedFrom=PDF [2] https://dr.library.brocku.ca/bitstream/handle/10464/6426/Brock_Cao_Xu_2015.pdf [3] Fama-French official data: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html ''' def Initialize(self): self.SetStartDate(2009, 7, 1) # Set Start Date self.SetEndDate(2019, 7, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Daily) # Used to check trading days self.__number_of_coarse_symbol = 200 # Set the number of coarse symbol to be further filtered by expected skewness self.predictor_list = [] # List to save monthly predictors for each symbol self.initial_selection = True # Control initial selection runs only once self._get_fama_french_factors() # Download Fama French factors data as a dataframe self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionAndSkewnessSorting) def CoarseSelectionAndSkewnessSorting(self, coarse): '''Coarse selection to get an initial fixed universe for the skewness sorting trade logic. Then, select the symbols to trade monthly based on skewness sorting. ''' ### Run the coarse universe selection only once at the beginning of strategy if self.initial_selection: # Select symbols with fundamental data coarse_with_fundamental = [x for x in coarse if x.HasFundamentalData] # Sort descendingly by daily dollar volume sorted_by_volume = sorted(coarse_with_fundamental, key = lambda x: x.DollarVolume, reverse = True) self.fine = [ x.Symbol for x in sorted_by_volume[:self.__number_of_coarse_symbol] ] self.initial_selection = False ### Select symbols to trade based on expected skewness at each month end # if not last trading day at month end, return the unchanged universe self.month = (self.Time - timedelta(days = 1)).month next_trading_day = self.Securities["SPY"].Exchange.Hours.GetNextMarketOpen(self.Time, False) if self.month == next_trading_day.month: return Universe.Unchanged self.Debug(f"Month end rebalance at: {self.Time}") # Estimate expected idiosyncratic skewness skewness = self.ExpectedSkewness() # Sort symbols by skewness skewness_sorted = skewness.sort_values(by = ['skew']).reset_index(drop = True) # Select the lowest quintile self.low_skew = skewness_sorted.loc[:math.ceil(self.__number_of_coarse_symbol * 0.05), 'symbol'] self.Debug(f"Selected symbols to trade >>\n {self.low_skew}\n") return [self.Symbol(x) for x in self.low_skew] def OnData(self, data): '''Rebalance at month end. Determine weights. Place orders. ''' # if not last trading day at month end, return next_trading_day = self.Securities["SPY"].Exchange.Hours.GetNextMarketOpen(self.Time, False) self.month = (self.Time - timedelta(days = 1)).month if self.month == next_trading_day.month: return # Determine weights weights = self.PortfolioWeights() # Place orders self.Liquidate() for symbol in self.low_skew: weight_i = weights[symbol] self.SetHoldings(symbol, weight_i) def ExpectedSkewness(self): '''Calculate expected skewness using historical moments and estimated regression coefficients ''' ### Get predictors self._get_predictors() ### Estimate coefficients by regressing current skewness on historical moments if len(self.predictor['time'].unique()) == 1: coef = [0, 1, 0] else: this_month = self.predictor['time'].iloc[-1] last_month = self.predictor['time'].unique()[-2] Y = self.predictor[self.predictor['time'] == this_month]['skew'].values X = self.predictor[self.predictor['time'] == last_month][['skew', 'vol']].values X = sm.add_constant(X) results = sm.OLS(Y, X, missing = 'drop').fit() coef = results.params ### Calculate expected skewness this_month = self.predictor['time'].iloc[-1] data_t = self.predictor[self.predictor['time'] == this_month][['skew', 'vol']].values ones = np.ones([len(data_t), 1]) data_t = np.append(ones, data_t, 1) exp_skew = np.inner(data_t, coef) skew_df = self.predictor[self.predictor['time'] == this_month][['symbol']].reset_index(drop = True) skew_df.loc[:,'skew'] = exp_skew return skew_df def PortfolioWeights(self): '''Construct equal-weighted portfolio''' weights = {} for symbol in self.low_skew: weights[symbol] = 1 / len(self.low_skew) return weights def _get_predictors(self): '''Run Fama-French time-series regression to get residuals. Then, use residuals to calculate historical moments. ''' ### Get historical returns for current month end_day = self.Time start_day = start_day = (self.Time - timedelta(days = 1)).replace(day = 1) history = self.History(self.fine, start_day - timedelta(days = 1), end_day, Resolution.Daily) # Get one more day for price data history = history.close.unstack(level = 0) daily_returns = (np.log(history) - np.log(history.shift(1)))[1:].dropna() # Drop the first day daily_returns['time'] = daily_returns.index ### Merge FF factors to returns dataframe based on dates available in return series daily_returns = daily_returns.merge(self.fama_french_factors_per_day, left_on = 'time', right_on = 'time') ### Run fama-french time-series regression and calculate historical moments column_list = list(daily_returns.columns) for symbol in self.fine: if str(symbol) not in column_list: self.Debug(f"Symbol not in return series >> {symbol}") self.predictor_list.append([str(symbol), self.Time, np.nan, np.nan]) continue Y = (daily_returns[str(symbol)] - daily_returns['RF']).values X = daily_returns[['Mkt_RF', 'SMB', 'HML']].values X = sm.add_constant(X) results = sm.OLS(Y, X).fit() hist_skew, hist_vol = stats.skew(results.resid), stats.tstd(results.resid) # Use daily residual to calculate monthly moments self.predictor_list.append([str(symbol), self.Time, hist_skew, hist_vol]) self.predictor = pd.DataFrame(self.predictor_list, columns = ['symbol', 'time', 'skew', 'vol']) def _get_fama_french_factors(self): '''Download fama-french factors data from Github cloud and read it as a DataFrame. Data is originally from Prof French's official homepage. I unzip the data folder and upload to Github cloud. ''' tmp_list = [] data_str = self.Download("https://raw.githubusercontent.com/xinweimetrics/Tutorials/master/04%20Strategy%20Library/231%20Expected%20Idiosyncratic%20Skewness/F-F_Research_Data_Factors_daily.CSV") data_lines = data_str.splitlines() data_lines = data_lines[5:-2] # drop the first 5 and last 2 lines which are not data that we need for line in data_lines: data = line.split(',') # add one day to match QC behavior: daily data is timestamped at UTC 00:00 the next day from the actual day that produced the data tmp_list.append([datetime.strptime(data[0], "%Y%m%d") + timedelta(days = 1)] + [float(i) for i in data[1:]]) self.fama_french_factors_per_day = pd.DataFrame(tmp_list, columns = ['time', 'Mkt_RF', 'SMB', 'HML', 'RF']) self.Debug(f"Downloading Fama-French data succeed! :: DataFrame shape >> {self.fama_french_factors_per_day.shape}")
import math import numpy as np import pandas as pd import statsmodels.api as sm from datetime import date, datetime, timedelta from scipy import stats class ExpectedIdiosyncraticSkewness(QCAlgorithm): '''Step 1. Calculating Fama-French daily regression residuals Step 2. Using daily residuals to calculate historical monthly moments Step 3. Run regression of historical monthly moments to estimate regression coefficients Step 4. Using historical monthly moments and estimated coefficients to calculate expected skewness Step 5. Sorting symbols by skewness and long the ones with lowest skewness Note: Fama-French factors data are only available up to 06/28/2019. So, backtest is implemented up to end of June, 2019. And, live trading is not feasible for current version. Reference: [1] https://academic.oup.com/rfs/article-abstract/23/1/169/1578688?redirectedFrom=PDF [2] https://dr.library.brocku.ca/bitstream/handle/10464/6426/Brock_Cao_Xu_2015.pdf [3] Fama-French official data: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html ''' def Initialize(self): self.SetStartDate(2010, 11, 1) # Set Start Date self.SetEndDate(2012, 2, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Daily) # Used to check trading days self.__number_of_coarse_symbol = 50 # Set the number of coarse symbol to be further filtered by expected skewness self.symbol_weight = pd.DataFrame() # DataFrame to save desired weights with symbols as index self.month = 0 # Track current calendar month self.next_trading_day = 0 # Track next trading day self._get_fama_french_factors() # Download Fama French factors data as a dataframe self.UniverseSettings.Resolution = Resolution.Daily # Subscribe daily data for selected symbols in universe self.AddUniverse(self.CoarseSelectionAndSkewnessSorting) # Coarse Selection and Skewness Sorting def CoarseSelectionAndSkewnessSorting(self, coarse): '''Coarse selection to get an initial fixed universe for the skewness sorting trade logic. Then, select the symbols to trade monthly based on skewness sorting. ''' # if not last trading day at month end, return the unchanged universe self.month = (self.Time - timedelta(days = 1)).month self.next_trading_day = self.Securities["SPY"].Exchange.Hours.GetNextMarketOpen(self.Time, False) if self.month == self.next_trading_day.month: return Universe.Unchanged self.Debug(f"Month end rebalance at: {self.Time}") ### Run the coarse selection to narrow down the universe # Sort descendingly by daily dollar volume sorted_by_volume = sorted(coarse, key = lambda x: x.DollarVolume, reverse = True) fine = [ x.Symbol for x in sorted_by_volume[:self.__number_of_coarse_symbol] ] self.Debug(f"fine >> {fine}") ### Select symbols to trade based on expected skewness at each month end # Estimate expected idiosyncratic skewness fine_and_skew = self.CalculateExpectedSkewness(fine) # Select the lowest quintile and calculate desired weights self.symbol_weight = pd.DataFrame(index = fine_and_skew.loc[:math.ceil(self.__number_of_coarse_symbol * 0.05)]['symbol']) self.symbol_weight.loc[:,'weight'] = np.ones([len(self.symbol_weight), 1]) / len(self.symbol_weight) self.Debug(f"Selected symbols to trade >>\n {list(self.symbol_weight.index)}\n") return [self.Symbol(x) for x in self.symbol_weight.index] + [self.Symbol("SPY")] def OnSecuritiesChanged(self, changes): '''Liquidate symbols that are removed from the dynamic universe ''' for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) def OnData(self, data): '''Rebalance at month end. Determine weights. Place orders. ''' # if not last trading day at month end, return if self.month == self.next_trading_day.month: return # Placing orders for symbol, row in self.symbol_weight.iterrows(): self.SetHoldings(symbol, row['weight']) def CalculateExpectedSkewness(self, fine): '''Calculate expected skewness using historical moments and estimated regression coefficients ''' ### Get predictors # Get historical returns for two months monthEnd_this = self.Time monthEnd_lag_1 = (self.Time - timedelta(days = 1)).replace(day = 1) monthEnd_lag_2 = (monthEnd_lag_1 - timedelta(days = 1)).replace(day = 1) # First day of last trading month self.Debug(f"this >> {monthEnd_this} :: lag1 >> {monthEnd_lag_1} :: lag2 >> {monthEnd_lag_2}") history = self.History(fine, monthEnd_lag_2 - timedelta(days = 1), monthEnd_this, Resolution.Daily) # Get one more day for price data # self.Debug(str(history)) self.Debug(f"len history returns >> {len(history)}") history = history["close"].unstack(level = 0) #self.Debug(str(history)) daily_returns = (np.log(history) - np.log(history.shift(1)))[1:] # Drop the first day #self.Debug(str(daily_returns)) self.Debug(f"len daily returns >> {len(daily_returns)}") # Merge Fama-French factors to daily returns based on dates available in return series daily_returns['time'] = daily_returns.index daily_returns = daily_returns.merge(self.fama_french_factors_per_day, left_on = 'time', right_on = 'time') self.Debug(str(daily_returns)) daily_returns_this = daily_returns[daily_returns['time'] > monthEnd_lag_1] daily_returns_last = daily_returns[daily_returns['time'] <= monthEnd_lag_1] self.Debug(f"this len >> {len(daily_returns_this)} :: last len >> {len(daily_returns_last)}") daily_returns_dict = {monthEnd_this: daily_returns_this, monthEnd_lag_1: daily_returns_last} # For each stock and each month, run fama-french time-series regression and calculate historical moments column_list = list(daily_returns.columns) predictor_list = [] for month, returns in daily_returns_dict.items(): self.Debug(str(returns)) for symbol in fine: if str(symbol) not in column_list: # self.Debug(f"Symbol not in return series >> {symbol}") predictor_list.append([str(symbol), month, np.nan, np.nan]) continue Y = (returns[str(symbol)] - returns['RF']).values X = returns[['Mkt_RF', 'SMB', 'HML']].values X = sm.add_constant(X) results = sm.OLS(Y, X).fit() hist_skew, hist_vol = stats.skew(results.resid), stats.tstd(results.resid) # Use daily residual to calculate monthly moments predictor_list.append([str(symbol), month, hist_skew, hist_vol]) predictor = pd.DataFrame(predictor_list, columns = ['symbol', 'time', 'skew', 'vol']) ### Estimate coefficients by regressing current skewness on historical moments Y = predictor[predictor['time'] == monthEnd_this]['skew'].values X = predictor[predictor['time'] == monthEnd_lag_1][['skew', 'vol']].values X = sm.add_constant(X) results = sm.OLS(Y, X, missing = 'drop').fit() coef = results.params ### Calculate expected skewness predictor_t = predictor[predictor['time'] == monthEnd_this][['skew', 'vol']].values ones = np.ones([len(predictor_t), 1]) predictor_t = np.append(ones, predictor_t, 1) exp_skew = np.inner(predictor_t, coef) skew_df = predictor[predictor['time'] == monthEnd_this][['symbol']].reset_index(drop = True) skew_df.loc[:,'skew'] = exp_skew skew_df = skew_df.sort_values(by = ['skew']).reset_index(drop = True) return skew_df def _get_fama_french_factors(self): '''Download fama-french factors data from Github cloud and read it as a DataFrame. Data is originally from Prof French's official homepage. I unzip the data folder and upload to Github cloud. ''' tmp_list = [] data_str = self.Download("https://raw.githubusercontent.com/xinweimetrics/Tutorials/master/04%20Strategy%20Library/231%20Expected%20Idiosyncratic%20Skewness/F-F_Research_Data_Factors_daily.CSV") data_lines = data_str.splitlines() data_lines = data_lines[5:-2] # drop the first 5 and last 2 lines which are not data that we need for line in data_lines: data = line.split(',') # add one day to match QC behavior: daily data is timestamped at UTC 00:00 the next day from the actual day that produced the data tmp_list.append([datetime.strptime(data[0], "%Y%m%d") + timedelta(days = 1)] + [float(i) for i in data[1:]]) self.fama_french_factors_per_day = pd.DataFrame(tmp_list, columns = ['time', 'Mkt_RF', 'SMB', 'HML', 'RF']) self.Debug(f"Downloading Fama-French data succeed! :: DataFrame shape >> {self.fama_french_factors_per_day.shape}")
import math import numpy as np import pandas as pd import statsmodels.api as sm from datetime import date, datetime, timedelta from scipy import stats class ExpectedIdiosyncraticSkewness(QCAlgorithm): '''Step 1. Calculating Fama-French daily regression residuals Step 2. Using daily residuals to calculate historical monthly moments Step 3. Run regression of historical monthly moments to estimate regression coefficients Step 4. Using historical monthly moments and estimated coefficients to calculate expected skewness Step 5. Sorting symbols by skewness and long the ones with lowest skewness Note: Fama-French factors data are only available up to 06/28/2019. So, backtest is implemented up to end of June, 2019. And, live trading is not feasible for current version. Reference: [1] "Expected Idiosyncratic Skewness" by Boyer, Mitton and Vorkink, Rev Financ Stud, June 2009 URL: https://academic.oup.com/rfs/article-abstract/23/1/169/1578688?redirectedFrom=PDF [2] https://dr.library.brocku.ca/bitstream/handle/10464/6426/Brock_Cao_Xu_2015.pdf [3] Fama-French official data: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html ''' def Initialize(self): self.SetStartDate(2009, 7, 1) # Set Start Date: Right after original paper published self.SetEndDate(2019, 7, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Daily) # Used to check trading days self.__number_of_coarse_symbol = 200 # Set the number of coarse symbol to be further filtered by expected skewness self.symbol_weight = pd.DataFrame() # DataFrame to save desired weights with symbols as index self.month = 0 # Track current calendar month self.next_trading_day = 0 # Track next trading day self._get_fama_french_factors() # Download Fama French factors data as a dataframe self.UniverseSettings.Resolution = Resolution.Daily # Subscribe daily data for selected symbols in universe self.AddUniverse(self.CoarseSelectionAndSkewnessSorting, self.GetWeightsInFineSelection) def CoarseSelectionAndSkewnessSorting(self, coarse): '''Coarse selection to get an initial fixed universe for the skewness sorting trade logic. Then, select the symbols to trade monthly based on skewness sorting. ''' # if not last trading day at month end, return the unchanged universe self.month = (self.Time - timedelta(days = 1)).month self.next_trading_day = self.Securities["SPY"].Exchange.Hours.GetNextMarketOpen(self.Time, False) if self.month == self.next_trading_day.month: return Universe.Unchanged self.Debug(f"Month end rebalance at: {self.Time}") ### Run the coarse selection to narrow down the universe # Sort descendingly by daily dollar volume & filter by fundamental data sorted_by_volume = sorted(coarse, key = lambda x: x.DollarVolume, reverse = True) filtered = [ x.Symbol for x in sorted_by_volume if x.HasFundamentalData and x.Price > 5 ] high_volume_stocks = filtered[:self.__number_of_coarse_symbol] ### Select symbols to trade based on expected skewness at each month end # Estimate expected idiosyncratic skewness symbol_and_skew = self.CalculateExpectedSkewness(high_volume_stocks) # Select the lowest quintile # fine = [ self.Symbol(x) for x in symbol_and_skew.loc[:math.ceil(self.__number_of_coarse_symbol * 0.05)]['symbol'] ] self.symbol_weight = pd.DataFrame(index = symbol_and_skew.loc[:math.ceil(self.__number_of_coarse_symbol * 0.05)]['symbol'], columns = ['cap', 'weight']) # self.symbol_weight.loc[:,'weight'] = np.ones([len(self.symbol_weight), 1]) / len(self.symbol_weight) # self.Debug(f"Selected symbols to trade >>\n {fine}\n") # return [self.Symbol(x) for x in self.symbol_weight.index] + [self.Symbol("SPY")] return [self.Symbol(x) for x in self.symbol_weight.index] # return fine def GetWeightsInFineSelection(self, fine): # self.symbol_weight = pd.DataFrame(index = fine, columns = ['cap', 'weight']) len_fine = len(self.symbol_weight) # fine = [ x for x in fine if x.EarningReports.BasicAverageShares.OneMonth > 0] i = 0 for stock in fine: self.symbol_weight.iloc[i]['cap'] = stock.EarningReports.BasicAverageShares.ThreeMonths * stock.Price i += 1 total_cap = self.symbol_weight['cap'].sum() self.symbol_weight['weight'] = self.symbol_weight['cap'] / total_cap return [ x.Symbol for x in fine ] + [self.Symbol("SPY")] def OnSecuritiesChanged(self, changes): '''Liquidate symbols that are removed from the dynamic universe ''' for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) def OnData(self, data): '''Rebalance at month end. Determine weights. Place orders. ''' # if not last trading day at month end, return if self.month == self.next_trading_day.month: return # Placing orders for symbol, row in self.symbol_weight.iterrows(): self.SetHoldings(symbol, row['weight']) def CalculateExpectedSkewness(self, fine): '''Calculate expected skewness using historical moments and estimated regression coefficients ''' ### Get predictors # Get historical returns for two months monthEnd_this = self.Time monthEnd_lag_1 = (self.Time - timedelta(days = 1)).replace(day = 1) monthEnd_lag_2 = (monthEnd_lag_1 - timedelta(days = 1)).replace(day = 1) # First day of last trading month history = self.History(fine, monthEnd_lag_2 - timedelta(days = 1), monthEnd_this, Resolution.Daily) # Get one more day for price data history = history["close"].unstack(level = 0) daily_returns = (np.log(history) - np.log(history.shift(1)))[1:] # Drop the first day # Merge Fama-French factors to daily returns based on dates available in return series daily_returns['time'] = daily_returns.index daily_returns = daily_returns.merge(self.fama_french_factors_per_day, left_on = 'time', right_on = 'time') daily_returns_this = daily_returns[daily_returns['time'] > monthEnd_lag_1] daily_returns_last = daily_returns[daily_returns['time'] <= monthEnd_lag_1] daily_returns_dict = {monthEnd_this: daily_returns_this, monthEnd_lag_1: daily_returns_last} # For each stock and each month, run fama-french time-series regression and calculate historical moments column_list = list(daily_returns.columns) predictor_list = [] for month, returns in daily_returns_dict.items(): for symbol in fine: if str(symbol) not in column_list: # self.Debug(f"Symbol not in return series >> {symbol}") predictor_list.append([str(symbol), month, np.nan, np.nan]) continue Y = (returns[str(symbol)] - returns['RF']).values X = returns[['Mkt_RF', 'SMB', 'HML']].values X = sm.add_constant(X) results = sm.OLS(Y, X).fit() hist_skew, hist_vol = stats.skew(results.resid), stats.tstd(results.resid) # Use daily residual to calculate monthly moments predictor_list.append([str(symbol), month, hist_skew, hist_vol]) predictor = pd.DataFrame(predictor_list, columns = ['symbol', 'time', 'skew', 'vol']) ### Estimate coefficients by regressing current skewness on historical moments Y = predictor[predictor['time'] == monthEnd_this]['skew'].values X = predictor[predictor['time'] == monthEnd_lag_1][['skew', 'vol']].values X = sm.add_constant(X) results = sm.OLS(Y, X, missing = 'drop').fit() coef = results.params ### Calculate expected skewness predictor_t = predictor[predictor['time'] == monthEnd_this][['skew', 'vol']].values ones = np.ones([len(predictor_t), 1]) predictor_t = np.append(ones, predictor_t, 1) exp_skew = np.inner(predictor_t, coef) skew_df = predictor[predictor['time'] == monthEnd_this][['symbol']].reset_index(drop = True) skew_df.loc[:,'skew'] = exp_skew skew_df = skew_df.sort_values(by = ['skew']).reset_index(drop = True) return skew_df def _get_fama_french_factors(self): '''Download fama-french factors data from Github cloud and read it as a DataFrame. Data is originally from Prof French's official homepage. I unzip the data folder and upload to Github cloud. ''' tmp_list = [] data_str = self.Download("https://raw.githubusercontent.com/xinweimetrics/Tutorials/master/04%20Strategy%20Library/231%20Expected%20Idiosyncratic%20Skewness/F-F_Research_Data_Factors_daily.CSV") data_lines = data_str.splitlines() data_lines = data_lines[5:-2] # drop the first 5 and last 2 lines which are not data that we need for line in data_lines: data = line.split(',') # add one day to match QC behavior: daily data is timestamped at UTC 00:00 the next day from the actual day that produced the data tmp_list.append([datetime.strptime(data[0], "%Y%m%d") + timedelta(days = 1)] + [float(i) for i in data[1:]]) self.fama_french_factors_per_day = pd.DataFrame(tmp_list, columns = ['time', 'Mkt_RF', 'SMB', 'HML', 'RF']) self.Debug(f"Downloading Fama-French data succeed! :: DataFrame shape >> {self.fama_french_factors_per_day.shape}")# Your New Python File
import pandas as pd from pandas.tseries.offsets import BMonthEnd from datetime import date, datetime, timedelta import numpy as np import statsmodels.api as sm from scipy import stats import math class ExpectedIdiosyncraticSkewness(QCAlgorithm): '''Step 1. Calculating Fama-French daily regression residuals Step 2. Using daily residuals to calculate historical monthly moments Step 3. Run regression of historical monthly moments to estimate regression coefficients Step 4. Using historical monthly moments and estimated coefficients to calculate expected skewness Step 5. Sorting symbols by skewness and long the ones with lowest skewness Note: Fama-French factors data are only available online up to 06/28/2019. So, backtest is implemented up to end of June, 2019. And, live trading is not feasible for current version. Reference: [1] https://academic.oup.com/rfs/article-abstract/23/1/169/1578688?redirectedFrom=PDF [2] https://dr.library.brocku.ca/bitstream/handle/10464/6426/Brock_Cao_Xu_2015.pdf ''' def Initialize(self): # Alex: No need since this is the default self.SetTimeZone("America/New_York") # Set Timezone self.SetStartDate(2014, 7, 1) # Set Start Date self.SetEndDate(2014, 9, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.__number_of_coarse_symbol = 200 # Set the number of coarse symbol to be further filtered by expected skewness self.predictor_list = [] self.fine = [] # Initial selection to narrow down QC universe. Skewness sorting strategy will be implemented for this fixed universe. self.initial_selection = True # Control flags self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) # Download Fama French factors data as a dataframe self._get_fama_french_factors() # Rebalance at month end self.AddEquity("SPY", Resolution.Daily) self.Schedule.On(self.DateRules.MonthEnd("SPY"), self.TimeRules.AfterMarketOpen("SPY", 1), self.MonthEndRebalance) def CoarseSelectionFunction(self, coarse): '''Coarse selection to get an initial universe for the skewness sorting logic''' # Only run the universe selection once at the beginning of strategy if not self.initial_selection: return self.fine # Select symbols with fundamental data coarse_with_fundamental = [x for x in coarse if x.HasFundamentalData] # Sort descending by daily dollar volume sorted_by_volume = sorted(coarse_with_fundamental, key = lambda x: x.DollarVolume, reverse = True) self.fine = [ x.Symbol for x in sorted_by_volume[:self.__number_of_coarse_symbol] ] return self.fine # Alex: This is a tutorial, not documentation, we don't need to leave optionals def FineSelectionFunction(self, fine): '''Optional: can add more filter in fine selection''' if not self.initial_selection: return self.fine self.initial_selection = False return self.fine # Alex: If OnData has only pass, remove it. def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' pass def MonthEndRebalance(self): '''Rebalance portfolio at month end based on skewness sorting function ''' self.Debug(f"Month End Rebalance at: {self.Time}") # Select symbols based on ranking of expected skewness self.symbol_to_trade = self.SkewnessSortingFunction() self.Debug(f"Selected symbols to trade >>\n {self.symbol_to_trade}\n") # Determine weights weights = self.PortfolioWeights() self.Liquidate() for symbol in self.symbol_to_trade: weight_i = weights[symbol] self.SetHoldings(symbol, weight_i) def SkewnessSortingFunction(self): '''Sort symbols based on expected skewness at each month end''' # Get historical monthly moments self._get_historical_moments() # Get coefficient from regression coef = self._get_skewness_coef() # Estimate expected idiosyncratic skewness skewness = self.ExpectedSkewness(coef) # Sort symbols by skewness skewness_sorted = skewness.sort_values(by = ['skew']).reset_index(drop = True) self.Debug(f"Symbols sorted by skewness (print 20 symbols) >>\n {skewness_sorted[:20]}") # Select the lowest quintile self.low_skew = skewness_sorted.loc[:math.ceil(self.__number_of_coarse_symbol * 0.05), 'symbol'] return self.low_skew def ExpectedSkewness(self, coef): '''Calculate expected skewness using historical moments and estimated regression coefficients ''' this_month = self.predictor['time'].iloc[-1] data_t = self.predictor[self.predictor['time'] == this_month][['skew', 'vol']].values ones = np.ones([len(data_t), 1]) data_t = np.append(ones, data_t, 1) # Adding constants exp_skew = np.inner(data_t, coef) # Return a df with key of symbols and value of skewness skew_df = self.predictor[self.predictor['time'] == this_month][['symbol']].reset_index(drop = True) skew_df.loc[:,'skew'] = exp_skew return skew_df def PortfolioWeights(self): '''Construct equal-weighted portfolio''' weights = {} for symbol in self.symbol_to_trade: weights[symbol] = 1 / len(self.symbol_to_trade) return weights def _get_skewness_coef(self): '''Regress current skewness on historical moments to get regression coefficients, which are used to calculate expected skewness ''' if len(self.predictor['time'].unique()) == 1: return [0, 1, 0] # Run regression and return coefficients this_month = self.predictor['time'].iloc[-1] last_month = self.predictor['time'].unique()[-2] Y = self.predictor[self.predictor['time'] == this_month]['skew'].values X = self.predictor[self.predictor['time'] == last_month][['skew', 'vol']].values X = sm.add_constant(X) # Adding a constant vector results = sm.OLS(Y, X, missing = 'drop').fit() beta = results.params return beta def _get_historical_moments(self): '''Regress daily excess return on excess market return, SMB, and HML to get Fama-French regression residuals. Then, use residuals to calculate historical moments. ''' # Get historical returns for current month end_day = self.Time start_day = self.Time.replace(day = 1) # Get first day of current month daily_returns = self._get_historical_returns(self.fine, start_day, end_day) # Merge FF factors to returns dataframe based on dates available in return series daily_returns = daily_returns.merge(self.fama_french_factors_per_day, left_on = 'time', right_on = 'time') column_list = list(daily_returns.columns) for symbol in self.fine: # Run fama-french time-series regression if str(symbol) not in column_list: self.Debug(f"Symbol not in return series >> {symbol}") self.predictor_list.append([str(symbol), self.Time, np.nan, np.nan]) continue Y = (daily_returns[str(symbol)] - daily_returns['RF']).values X = daily_returns[['Mkt_RF', 'SMB', 'HML']].values X = sm.add_constant(X) # Adding a constant vector results = sm.OLS(Y, X).fit() hist_skew, hist_vol = stats.skew(results.resid), stats.tstd(results.resid) # Use daily residual to calculate monthly moments self.predictor_list.append([str(symbol), self.Time, hist_skew, hist_vol]) self.predictor = pd.DataFrame(self.predictor_list, columns = ['symbol', 'time', 'skew', 'vol']) return [] def _get_historical_returns(self, symbols, start_day, end_day): '''Get historical returns for a given set of symbols and a given period''' history = self.History(symbols, start_day - timedelta(days = 1), end_day, Resolution.Daily) # Get one more day for price data history = history.close.unstack(level = 0) historical_returns = (np.log(history) - np.log(history.shift(1)))[1:].dropna() # Drop the first day historical_returns['time'] = historical_returns.index # Convert index 'time' into a column return historical_returns def _get_fama_french_factors(self): '''Download fama-french factors data from Dropbox and read it as a DataFrame''' tmp_list = [] # data_str = self.Download("https://www.dropbox.com/s/rpob7ehzheuym7z/F-F_Research_Data_Factors_daily.CSV?dl=1") # https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_TXT.zip data_str = self.Download("https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_TXT.zip") data_lines = data_str.splitlines() data_lines = data_lines[5:-2] # drop the first 5 and last 2 lines which are not data that we need for line in data_lines: data = line.split(',') # add one day to match QC behavior: daily data is timestamped at UTC 00:00 the next day from the actual day that produced the data tmp_list.append([datetime.strptime(data[0], "%Y%m%d") + timedelta(days = 1)] + [float(i) for i in data[1:]]) self.fama_french_factors_per_day = pd.DataFrame(tmp_list, columns = ['time', 'Mkt_RF', 'SMB', 'HML', 'RF']) self.Debug(f"Downloading Fama-French data succeed! :: DataFrame shape >> {self.fama_french_factors_per_day.shape}")
import pandas as pd from pandas.tseries.offsets import BMonthEnd from datetime import date, datetime, timedelta import numpy as np import statsmodels.api as sm from scipy import stats import math class ExpectedIdiosyncraticSkewness(QCAlgorithm): '''Step 1. Calculating Fama-French daily regression residuals Step 2. Using daily residuals to calculate historical monthly moments Step 3. Run regression of historical monthly moments to estimate regression coefficients Step 4. Using historical monthly moments and estimated coefficients to calculate expected skewness Step 5. Sorting symbols by skewness and long the ones with lowest skewness Note: Fama-French factors data are only available online up to 06/28/2019. So, backtest is implemented up to end of June, 2019. And, live trading is not feasible for current version. Reference: [1] https://academic.oup.com/rfs/article-abstract/23/1/169/1578688?redirectedFrom=PDF [2] https://dr.library.brocku.ca/bitstream/handle/10464/6426/Brock_Cao_Xu_2015.pdf ''' def Initialize(self): self.SetStartDate(2018, 1, 2) # Set Start Date self.SetEndDate(2019, 7, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.__number_of_coarse_symbol = 50 # Set the number of coarse symbol to be further filtered by expected skewness self.predictor_list = [] self.fine = [] # Initial selection to narrow down QC universe. Skewness sorting strategy will be implemented for this fixed universe. self.initial_selection = True # Control flags self.next_rebalance = False self.select_done = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionAndSkewnessSorting) # Download Fama French factors data as a dataframe self._get_fama_french_factors() # Rebalance at month end self.AddEquity("SPY", Resolution.Daily) # self.Schedule.On(self.DateRules.MonthEnd("SPY"), self.TimeRules.AfterMarketOpen("SPY", 1), self.RebalanceSignal) # self.Schedule.On(self.DateRules.MonthEnd("SPY"), self.TimeRules.At(0, 0), self.RebalanceSignal) def CoarseSelectionAndSkewnessSorting(self, coarse): '''Coarse selection to get an initial universe for the skewness sorting logic''' self.Debug(f"Universe Selection >> {self.Time}") ### Only run the coarse universe selection once at the beginning of strategy if self.initial_selection: # Select symbols with fundamental data coarse_with_fundamental = [x for x in coarse if x.HasFundamentalData] # Sort descending by daily dollar volume sorted_by_volume = sorted(coarse_with_fundamental, key = lambda x: x.DollarVolume, reverse = True) self.fine = [ x.Symbol for x in sorted_by_volume[:self.__number_of_coarse_symbol] ] self.initial_selection = False ### Select symbols to trade based on expected skewness at each month end # if not self.next_rebalance: return Universe.Unchanged next_trading_day = self.Securities["SPY"].Exchange.Hours.GetNextMarketOpen(self.Time, False) self.month = (self.Time - timedelta(days = 1)).month if self.month == next_trading_day.month: return Universe.Unchanged self.Debug(f"Monthly rebalance at: {self.Time}") # Get historical monthly moments self._get_historical_moments() # Get coefficient from regression coef = self._get_skewness_coef() # Estimate expected idiosyncratic skewness skewness = self.ExpectedSkewness(coef) # Sort symbols by skewness skewness_sorted = skewness.sort_values(by = ['skew']).reset_index(drop = True) self.Debug(f"Symbols sorted by skewness (print 20 symbols) >>\n {skewness_sorted[:20]}") # Select the lowest quintile self.low_skew = skewness_sorted.loc[:math.ceil(self.__number_of_coarse_symbol * 0.05), 'symbol'] #self.next_rebalance = False #self.select_done = True selected = [self.Symbol(x) for x in self.low_skew] self.Debug(f"return type >> {selected[0]}") self.Debug(f"selection done >> {self.Time} :: {type(self.low_skew)} :: {self.low_skew}") return selected # def RebalanceSignal(self): # self.Debug(f"Rebalance Signal >> {self.Time}") # self.next_rebalance = True def OnData(self, data): '''Rebalance portfolio at month end based on skewness sorting function ''' self.Debug(f"On Data >> {self.Time}") # if not self.select_done: return next_trading_day = self.Securities["SPY"].Exchange.Hours.GetNextMarketOpen(self.Time, False) self.month = (self.Time - timedelta(days = 1)).month if self.month == next_trading_day.month: return self.Debug(f"Month End Rebalance at: {self.Time}") # Select symbols based on ranking of expected skewness #self.symbol_to_trade = self.SkewnessSortingFunction() #self.Debug(f"Selected symbols to trade >>\n {self.symbol_to_trade}\n") self.Debug(f"Selected symbols to trade >>\n {self.low_skew}\n") # Determine weights weights = self.PortfolioWeights() self.Liquidate() #for symbol in self.symbol_to_trade: for symbol in self.low_skew: weight_i = weights[symbol] # self.Debug(f"weight >> {weight_i} :: symbol type >> {type(symbol)} >> {symbol}") self.SetHoldings(symbol, weight_i) # self.select_done = False # def SkewnessSortingFunction(self): # '''Sort symbols based on expected skewness at each month end''' # # Get historical monthly moments # self._get_historical_moments() # # Get coefficient from regression # coef = self._get_skewness_coef() # # Estimate expected idiosyncratic skewness # skewness = self.ExpectedSkewness(coef) # # Sort symbols by skewness # skewness_sorted = skewness.sort_values(by = ['skew']).reset_index(drop = True) # self.Debug(f"Symbols sorted by skewness (print 20 symbols) >>\n {skewness_sorted[:20]}") # # Select the lowest quintile # self.low_skew = skewness_sorted.loc[:math.ceil(self.__number_of_coarse_symbol * 0.05), 'symbol'] # return self.low_skew def ExpectedSkewness(self, coef): '''Calculate expected skewness using historical moments and estimated regression coefficients ''' this_month = self.predictor['time'].iloc[-1] data_t = self.predictor[self.predictor['time'] == this_month][['skew', 'vol']].values ones = np.ones([len(data_t), 1]) data_t = np.append(ones, data_t, 1) # Adding constants exp_skew = np.inner(data_t, coef) # Return a df with key of symbols and value of skewness skew_df = self.predictor[self.predictor['time'] == this_month][['symbol']].reset_index(drop = True) skew_df.loc[:,'skew'] = exp_skew return skew_df def PortfolioWeights(self): '''Construct equal-weighted portfolio''' weights = {} for symbol in self.low_skew: weights[symbol] = 1 / len(self.low_skew) return weights def _get_skewness_coef(self): '''Regress current skewness on historical moments to get regression coefficients, which are used to calculate expected skewness ''' if len(self.predictor['time'].unique()) == 1: return [0, 1, 0] # Run regression and return coefficients this_month = self.predictor['time'].iloc[-1] last_month = self.predictor['time'].unique()[-2] Y = self.predictor[self.predictor['time'] == this_month]['skew'].values X = self.predictor[self.predictor['time'] == last_month][['skew', 'vol']].values X = sm.add_constant(X) # Adding a constant vector results = sm.OLS(Y, X, missing = 'drop').fit() beta = results.params return beta def _get_historical_moments(self): '''Regress daily excess return on excess market return, SMB, and HML to get Fama-French regression residuals. Then, use residuals to calculate historical moments. ''' # Get historical returns for current month end_day = self.Time start_day = (self.Time - timedelta(days = 1)).replace(day = 1) # Get first day of current month history = self.History(self.fine, start_day - timedelta(days = 1), end_day, Resolution.Daily) # Get one more day for price data history = history.close.unstack(level = 0) daily_returns = (np.log(history) - np.log(history.shift(1)))[1:].dropna() # Drop the first day daily_returns['time'] = daily_returns.index # Convert index 'time' into a column # Merge FF factors to returns dataframe based on dates available in return series daily_returns = daily_returns.merge(self.fama_french_factors_per_day, left_on = 'time', right_on = 'time') column_list = list(daily_returns.columns) for symbol in self.fine: # Run fama-french time-series regression if str(symbol) not in column_list: self.Debug(f"Symbol not in return series >> {symbol}") self.predictor_list.append([str(symbol), self.Time, np.nan, np.nan]) continue Y = (daily_returns[str(symbol)] - daily_returns['RF']).values X = daily_returns[['Mkt_RF', 'SMB', 'HML']].values X = sm.add_constant(X) # Adding a constant vector results = sm.OLS(Y, X).fit() hist_skew, hist_vol = stats.skew(results.resid), stats.tstd(results.resid) # Use daily residual to calculate monthly moments self.predictor_list.append([str(symbol), self.Time, hist_skew, hist_vol]) self.predictor = pd.DataFrame(self.predictor_list, columns = ['symbol', 'time', 'skew', 'vol']) return [] def _get_fama_french_factors(self): '''Download fama-french factors data from Dropbox and read it as a DataFrame''' tmp_list = [] data_str = self.Download("https://raw.githubusercontent.com/xinweimetrics/Tutorials/master/04%20Strategy%20Library/231%20Expected%20Idiosyncratic%20Skewness/F-F_Research_Data_Factors_daily.CSV") data_lines = data_str.splitlines() data_lines = data_lines[5:-2] # drop the first 5 and last 2 lines which are not data that we need for line in data_lines: data = line.split(',') # add one day to match QC behavior: daily data is timestamped at UTC 00:00 the next day from the actual day that produced the data tmp_list.append([datetime.strptime(data[0], "%Y%m%d") + timedelta(days = 1)] + [float(i) for i in data[1:]]) self.fama_french_factors_per_day = pd.DataFrame(tmp_list, columns = ['time', 'Mkt_RF', 'SMB', 'HML', 'RF']) self.Debug(f"Downloading Fama-French data succeed! :: DataFrame shape >> {self.fama_french_factors_per_day.shape}")