Overall Statistics |
Total Trades 5 Average Win 0% Average Loss 0% Compounding Annual Return -9.523% Drawdown 8.000% Expectancy 0 Net Profit -7.820% Sharpe Ratio -1.52 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.177 Beta 3.998 Annual Standard Deviation 0.064 Annual Variance 0.004 Information Ratio -1.831 Tracking Error 0.064 Treynor Ratio -0.024 Total Fees $71.94 |
from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Data import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from System.Collections.Generic import List import decimal as d import numpy as np import time from datetime import datetime import numpy as np from scipy import stats import pandas as pd class AFCMOM(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.first = -1 self.bi_weekly = 0 self.SetStartDate(2006,5,10) self.SetEndDate(2006,5,15) self.SetCash(100000) self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.Debug("numpy test >>> print numpy.pi: " + str(np.pi)) self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction) self.UniverseSettings.Resolution = Resolution.Daily self.spy_200_sma = self.SMA("SPY",200,Resolution.Daily) self.Schedule.On(self.DateRules.Every(DayOfWeek.Wednesday,DayOfWeek.Wednesday), \ self.TimeRules.At(12, 0), \ Action(self.rebalnce)) self.stocks_to_trade = [] self.SetWarmUp(201) def CoarseSelectionFunction(self, coarse): filtered_stocks = filter(lambda x: x.DollarVolume >250000,coarse) filtered_stocks = filter(lambda x: x.HasFundamentalData,filtered_stocks) filtered_stocks = filter(lambda x: x.Price >=20,filtered_stocks) filtered_stocks = filtered_stocks[:100] return [stock.Symbol for stock in filtered_stocks] def FineSelectionFunction(self, fine): filtered_stocks = filter(lambda x: x.SecurityReference.IsPrimaryShare,fine) return [stock.Symbol for stock in filtered_stocks] def OnSecuritiesChanged(self, changes): dt = datetime(self.Time.year,self.Time.month,self.Time.day) if dt.weekday() != 3 or self.Securities[self.spy].Price < self.spy_200_sma.Current.Value: return self.stocks_to_trade = [stock.Symbol for stock in changes.AddedSecurities] if self.stocks_to_trade: for stock in self.stocks_to_trade: ATR = self.my_ATR(stock,14) self.stocks_to_trade.sort(key = lambda x: self.get_slope(stock,90),reverse= True) maximum_range = int(round(len(self.stocks_to_trade) * 0.10)) self.stocks_to_trade[:maximum_range] cash = float(self.Portfolio.Cash) oo = len(self.Transactions.GetOpenOrders(stock)) if self.Securities[stock].Price >self.moving_average(stock,100) and not self.gapper(stock,90) and cash >0 and not oo: self.SetHoldings(stock,self.weight(stock,ATR)) def rebalnce(self): self.bi_weekly +=1 if self.bi_weekly%2 == 0: for stock in self.Portfolio.Values: if stock.Invested: symbol = stock.Symbol shares_held = float(self.Portfolio[symbol].Quantity) if (self.Securities[symbol].Price < self.moving_average(symbol,100) and shares_held >0) or (self.gapper(symbol,90) and shares_held>0): self.Liquidate(symbol) else: if shares_held >0: ATR = self.my_ATR(symbol,20) cost_basis = float(self.Portfolio[symbol].AveragePrice) shares_held = float(self.Portfolio[symbol].Quantity) percent_of_p = ((cost_basis * shares_held )/ float(self.Portfolio.TotalPortfolioValue)) weight= self.weight(symbol,ATR) diff_in_desired_weight = weight -percent_of_p if diff_in_desired_weight < 0: order_amount = shares_held * diff_in_desired_weight self.MarketOrder(symbol,order_amount) def gapper(self,security,period): if not self.Securities.ContainsKey(security): return 0 security_data = self.History(security,period,Resolution.Daily) ############################################################### # we need to ensure we have data or np.max axis reduction will throw: # zero-size array to reduction operation maximum which has no identity if 'close' not in security_data.columns: self.Log(str("History had no Close for %s"%security)) return if len(security_data['close']) < 2: # we need enough for the np.diff which removes 1 from length self.Log(str("Close had too few or no values for %s"%security)) return ############################################################### close_data = [float(data) for data in security_data['close']] return np.max(np.abs(np.diff(close_data))/close_data[:-1])>=0.15 def get_slope(self,security,period): if not self.Securities.ContainsKey(security): return 0 security_data = self.History(security,period,Resolution.Daily) if 'close' not in security_data: return 0 y= [np.log(float(data)) for data in security_data['close']] x = [range(len(y))] slope,r_value = stats.linregress(x,y)[0],stats.linregress(x,y)[2] return ((np.exp(slope)**252)-1)*(r_value**2) def my_ATR(self,security,period): if not self.Securities.ContainsKey(security): return 0 self.first+=1 security_data = self.History([security],period,Resolution.Daily) c_data = [float(data) for data in security_data['close']] l_data= [float(data) for data in security_data['low']] h_data = [float(data) for data in security_data['high']] true_range = [h-l for h,l in zip(h_data,l_data)] average_true_range = np.mean(true_range) average_true_range_smooted = ((average_true_range*13)+true_range[-1])/14 return average_true_range_smooted if not self.first else average_true_range def weight(self,security,atr): risk = float(self.Portfolio.TotalPortfolioValue)*0.0001 return (((risk/atr) * float(self.Securities[security].Price))/float(self.Portfolio.TotalPortfolioValue)*100) def moving_average(self,security,period): if not self.Securities.ContainsKey(security): return 0 security_data = self.History(security,period,Resolution.Daily) return np.mean([close for close in security_data['close']])