Overall Statistics
Total Orders
10001
Average Win
0.59%
Average Loss
-1.23%
Compounding Annual Return
104.016%
Drawdown
29.000%
Expectancy
0.325
Start Equity
100000
End Equity
671657.72
Net Profit
571.658%
Sharpe Ratio
2.062
Sortino Ratio
2.189
Probabilistic Sharpe Ratio
87.707%
Loss Rate
11%
Win Rate
89%
Profit-Loss Ratio
0.48
Alpha
0.646
Beta
0.811
Annual Standard Deviation
0.348
Annual Variance
0.121
Information Ratio
2.016
Tracking Error
0.312
Treynor Ratio
0.883
Total Fees
$971.99
Estimated Strategy Capacity
$340000000.00
Lowest Capacity Asset
AMZN R735QTJ8XC9X
Portfolio Turnover
5.48%
from AlgorithmImports import *

class EMAMovingAverageStrategy(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2018, 1, 1)
        self.SetEndDate(2021, 1, 1)
        self.SetCash(100000)

        # Add all symbols in S&P 500
        self.symbols = ["AAPL", "MSFT", "GOOGL", "AMZN", "FB", "JPM", "V", "PG", "DIS", "HD",  # Add more symbols as needed
                        "VZ", "KO", "INTC", "NFLX", "TSLA", "NVDA", "UNH", "PYPL", "PEP", "ABT", 
                        "BAC", "CMCSA", "ADBE", "XOM", "MRK", "PFE", "WMT", "NKE", "CSCO", "MCD", 
                        "MA", "ABNB", "CRM", "AVGO", "T", "ORCL", "ACN", "CVX", "LMT", "MDT",
                        "IBM", "TXN", "QCOM", "LOW", "AMGN", "SBUX", "TMO", "COST", "GILD", "UPS"]
        
        # Initialize indicators and rolling windows for each symbol
        self.indicators = {}
        self.ema60_tracks = {}

        for symbol in self.symbols:
            equity = self.AddEquity(symbol, Resolution.Daily)
            self.indicators[symbol] = {
                "ema9": self.EMA(equity.Symbol, 9, Resolution.Daily),
                "ema15": self.EMA(equity.Symbol, 15, Resolution.Daily),
                "ema65": self.EMA(equity.Symbol, 65, Resolution.Daily),
                "ema200": self.EMA(equity.Symbol, 150, Resolution.Daily),
                "ema35": self.EMA(equity.Symbol, 35 , Resolution.Daily),
                "rsi": self.RSI(equity.Symbol, 14, Resolution.Daily)
            }
            self.ema60_tracks[symbol] = RollingWindow[IndicatorDataPoint](60)
        
        self.SetWarmUp(200)

    def OnData(self, data):
        if self.IsWarmingUp:
            return

        for symbol in self.symbols:
            if data.ContainsKey(symbol):
                current_data = data[symbol]
                if current_data:
                    self.ema60_tracks[symbol].Add(self.indicators[symbol]["ema35"].Current)
        
        for symbol in self.symbols:
            if self.ema60_tracks[symbol].IsReady:
                self.TradeSymbol(symbol)

    def TradeSymbol(self, symbol):
        indicators = self.indicators[symbol]
        ema60_track = self.ema60_tracks[symbol]  # Corrected attribute name

        if self.IsBuyCondition(indicators, ema60_track):  # Pass ema60_track to IsBuyCondition
            self.SetHoldings(symbol, 1)
        elif self.IsSellCondition(indicators, ema60_track):  # Pass ema60_track to IsSellCondition
           self.Liquidate(symbol)
        elif self.Portfolio[symbol].Invested:
            if self.IsExitBuyCondition(indicators):
                self.Liquidate(symbol)
            elif self.IsExitSellCondition(indicators):
                self.Liquidate(symbol)
            
                 

    def IsBuyCondition(self, indicators, ema60_track):  # Added ema60_track parameter
        ema_condition = (indicators["ema9"].Current.Value > indicators["ema15"].Current.Value > indicators["ema65"].Current.Value > indicators["ema200"].Current.Value)
        ema35_condition = all(x.Value > 60 for x in ema60_track)
        return ema_condition and ema35_condition

    def IsSellCondition(self, indicators, ema60_track):  # Added ema60_track parameter
        ema_condition = (indicators["ema9"].Current.Value < indicators["ema15"].Current.Value < indicators["ema65"].Current.Value < indicators["ema200"].Current.Value)
        ema35_condition = all(x.Value < 60 for x in ema60_track)
        return ema_condition and ema35_condition

    def IsExitBuyCondition(self, indicators):
        ema_cross_condition = (indicators["ema9"].Current.Value < indicators["ema65"].Current.Value or indicators["ema15"].Current.Value < indicators["ema65"].Current.Value)
        rsi_condition = indicators["rsi"].Current.Value < 40
        return ema_cross_condition and rsi_condition

    def IsExitSellCondition(self, indicators):
        ema_cross_condition = (indicators["ema9"].Current.Value > indicators["ema65"].Current.Value or indicators["ema15"].Current.Value > indicators["ema65"].Current.Value)
        rsi_condition = indicators["rsi"].Current.Value > 60
        return ema_cross_condition and rsi_condition