Overall Statistics |
Total Trades 2 Average Win 7.59% Average Loss 0% Compounding Annual Return 7.848% Drawdown 1.300% Expectancy 0 Net Profit 7.796% Sharpe Ratio 2.66 Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.093 Beta -0.889 Annual Standard Deviation 0.028 Annual Variance 0.001 Information Ratio 1.959 Tracking Error 0.028 Treynor Ratio -0.085 Total Fees $6.03 |
import numpy as np ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2017,1, 1) #Set Start Date self.SetEndDate(2017,12,31) #Set End Date self.SetCash(100000) #Set Strategy Cash # Set Benchmark SPY self.SetBenchmark("SPY") # Find more symbols here: http://quantconnect.com/data self.AddEquity("SPY") self.Schedule.On(self.DateRules.On(2017, 9, 27), self.TimeRules.At(10, 0), Action(self.buy)) self.Schedule.On(self.DateRules.On(2017, 12, 21), self.TimeRules.At(10, 0), Action(self.sell)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' pass def buy(self): # place buy order self.SetHoldings("SPY", 1) def sell(self): # place sell order self.SetHoldings("SPY", -1)