Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $1.71 |
class MyMainAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 8, 2) # Set Start Date self.SetEndDate(2019,8,4) self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Minute) self.myStocks = ['GOOG','AAPL'] self.maxPain = 400.00 self.maxProfit = 0.00 self.sub = MySubModule(self) def printMaxPain(self): self.Log("Max pain is {} " .format(self.maxPain)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' self.Log("before subroutine value maxProfit {}" . format(self.maxProfit)) self.sub.Update() self.Log("after subroutine value maxProfit {}" . format(self.maxProfit)) if not self.Portfolio.Invested: self.SetHoldings("SPY", 1) class MySubModule(AlphaModel): def __init__(self,algorithm): self.algo = algorithm self.algo.maxProfit = 100.00 def Update(self): self.algo.printMaxPain() #self.algo.maxProfit = 100.00