Overall Statistics |
Total Trades 141 Average Win 3.22% Average Loss -0.72% Compounding Annual Return 24.336% Drawdown 19.300% Expectancy 1.879 Net Profit 143.453% Sharpe Ratio 1.438 Probabilistic Sharpe Ratio 75.093% Loss Rate 47% Win Rate 53% Profit-Loss Ratio 4.45 Alpha 0.213 Beta -0.029 Annual Standard Deviation 0.145 Annual Variance 0.021 Information Ratio 0.285 Tracking Error 0.236 Treynor Ratio -7.247 Total Fees $141.00 |
""" DUAL MOMENTUM-IN OUT v2 by Vladimir https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/p3/comment-28146 inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang and T Smith. """ import numpy as np class DualMomentumInOut(QCAlgorithm): def Initialize(self): self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " Initializing DualMomentumInOut") self.msg = "" self.SetStartDate(2017, 1, 1) self.SetEndDate(2021, 2, 1) self.cap = 10000 self.SetCash(10000) self.STK1 = self.AddEquity('QQQ', Resolution.Minute).Symbol self.STK2 = self.AddEquity('FDN', Resolution.Minute).Symbol self.BND1 = self.AddEquity('TLT', Resolution.Minute).Symbol self.BND2 = self.AddEquity('TLH', Resolution.Minute).Symbol self.ASSETS = [self.STK1, self.STK2, self.BND1, self.BND2] self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol self.XLI = self.AddEquity('XLI', Resolution.Daily).Symbol self.XLU = self.AddEquity('XLU', Resolution.Daily).Symbol self.SLV = self.AddEquity('SLV', Resolution.Daily).Symbol self.GLD = self.AddEquity('GLD', Resolution.Daily).Symbol self.FXA = self.AddEquity('FXA', Resolution.Daily).Symbol self.FXF = self.AddEquity('FXF', Resolution.Daily).Symbol self.DBB = self.AddEquity('DBB', Resolution.Daily).Symbol self.UUP = self.AddEquity('UUP', Resolution.Daily).Symbol self.IGE = self.AddEquity('IGE', Resolution.Daily).Symbol self.SHY = self.AddEquity('SHY', Resolution.Daily).Symbol self.FORPAIRS = [self.XLI, self.XLU, self.SLV, self.GLD, self.FXA, self.FXF] self.SIGNALS = [self.XLI, self.DBB, self.IGE, self.SHY, self.UUP] self.PAIR_LIST = ['S_G', 'I_U', 'A_F'] self.INI_WAIT_DAYS = 15 self.SHIFT = 55 self.MEAN = 11 self.RET = 126 self.EXCL = 5 self.leveragePercentage = 101 self.selected_bond = self.BND1 self.selected_stock = self.STK1 self.init = 0 self.bull = 1 self.count = 0 self.outday = 0 self.in_stock = 0 self.spy = [] self.wait_days = self.INI_WAIT_DAYS self.wt = {} self.real_wt = {} #self.SetWarmUp(timedelta(126)) self.SetWarmUp(timedelta(90)) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 100), self.calculate_signal) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120), self.trade_out) self.Schedule.On(self.DateRules.WeekStart(), self.TimeRules.AfterMarketOpen('SPY', 100), self.trade_in) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose('SPY', 0), self.record_vars) #self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(TimeSpan.FromMinutes(10)), # self.trade_in) #self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(TimeSpan.FromMinutes(5)), # self.calculate_signal) #self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(TimeSpan.FromMinutes(7)), # self.trade_out) symbols = self.SIGNALS + [self.MKT] + self.FORPAIRS for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days = 1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.lookback = 252 # 1 year trading days self.history = self.History(symbols, self.lookback, Resolution.Daily) #self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " self.history =") # indicees: symbols, time columns: OHLCV if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() #self.Debug(self.history) # # # timestamp 1: # timestamp 2: # # self.update_history_shift() ''' Everyday: 1. 11:10 AM: Calculate Signals 2. 11:30 AM: Trade_Out WeekEnd (Last trading day of week - Friday if no holiday): 1. 11:30 AM: Trade In Recording DATA EveryDay before market close ''' def EndOfDay(self): # check if account drawdown exceeds some predetermined limit # if self.drawdown_reached: # self.Liquidate() # liquidate everything # self.Quit() # kill the algorithm self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " EndOfDay called") pass def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-self.lookback:] self.update_history_shift() def update_history_shift(self): #self.Debug("update_history_shift called") #self.Debug("---self.history.shift(self.SHIFT)---") #elf.Debug(self.history.shift(self.SHIFT)) #self.Debug("+++self.history.shift(self.SHIFT).rolling(self.MEAN)+++") #self.Debug(self.history.shift(self.SHIFT).rolling(self.MEAN)) #self.Debug("***self.history.shift(self.SHIFT).rolling(self.MEAN).mean()***") #self.Debug(self.history.shift(self.SHIFT).rolling(self.MEAN).mean()) # # The history sift goes back 55 business days (i.e ignoring from today going back 55) # The rolling self mean takes the average of the last 10 rows of closing prices # self.history_shift_mean = self.history.shift(self.SHIFT).rolling(self.MEAN).mean() def returns(self, symbol, period, excl): # history call of daily close data of length (period + excl) prices = self.History(symbol, TimeSpan.FromDays(period + excl), Resolution.Daily).close # symbol = SPY , period = 10, excl = 3 # 13 days of close data for SPY # returns of last 3 days over history call period # = last 3 days of closes / close 13 days ago # returns the last excl days of returns as compared to the beginning of the period # return prices[-excl] / prices[0] def calculate_signal(self): self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " calculate_signal called") self.add_msg("calculate_signal called") ''' Finds 55-day return for all securities Calculates extreme negative returns (1th percentile) If there are currently extreme returns, sets bull flag to False Starts counter Also selects bond and stock we will be trading based on recent returns ''' # self.history #elf.Debug("----- self.history -----") #self.Debug(self.history) #self.Debug("+++++ self.history_shift_mean +++++") #self.Debug(self.history_shift_mean) # # momentum for all securities todays closing prices / 55 days ago rolling 10 days average subtrace # mom = (self.history / self.history_shift_mean - 1) #self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " mom = (self.history / self.history_shift_mean - 1)") #self.Debug(mom) # # # # # MOMENTUM Values/Return over past 55 days # Today's return / 11 Period SMA 55 days ago mom[self.UUP] = mom[self.UUP] * (-1) mom['S_G'] = mom[self.SLV] - mom[self.GLD] mom['I_U'] = mom[self.XLI] - mom[self.XLU] mom['A_F'] = mom[self.FXA] - mom[self.FXF] pctl = np.nanpercentile(mom, 1, axis=0) # calculating value of 1th percentile of return # this over all history call # it's a dataframe that you can a pass symbol and it will return true # if the previous 55-day return is an extreme negative # you can pass it a symbol extreme[self.MKT], and it returns a boolean # you can also pass it multiple symbols extreme[] extreme = mom.iloc[-1] < pctl # looking at most recent data, last day, is it extreme compared to # historical 1th percentile of worst returns? wait_days_value_1 = 0.50 * self.wait_days wait_days_value_2 = self.INI_WAIT_DAYS * max(1, np.where((mom[self.GLD].iloc[-1]>0) & (mom[self.SLV].iloc[-1]<0) & (mom[self.SLV].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((mom[self.XLU].iloc[-1]>0) & (mom[self.XLI].iloc[-1]<0) & (mom[self.XLI].iloc[-2]>0), self.INI_WAIT_DAYS, 1), np.where((mom[self.FXF].iloc[-1]>0) & (mom[self.FXA].iloc[-1]<0) & (mom[self.FXA].iloc[-2]>0), self.INI_WAIT_DAYS, 1) ) self.wait_days = int(max(wait_days_value_1, wait_days_value_2)) # we want our wait days to be no more than 60 days adjwaitdays = min(60, self.wait_days) # self.Debug('{}'.format(self.wait_days)) # returns true if ANY security has an extreme negative 55 day return if (extreme[self.SIGNALS + self.PAIR_LIST]).any(): self.bull = False self.outday = self.count # if there is an extreme, we wait a maximum of 60 days # at the end of our wait period, we are again bullish # reset each time we have a new extreme. if self.count >= self.outday + adjwaitdays: self.bull = True self.count += 1 self.Plot("In Out", "in_market", int(self.bull)) self.Plot("In Out", "num_out_signals", extreme[self.SIGNALS + self.PAIR_LIST].sum()) self.Plot("Wait Days", "waitdays", adjwaitdays) if self.returns(self.BND1, self.RET, self.EXCL) < self.returns(self.BND2, self.RET, self.EXCL): self.selected_bond = self.BND2 elif self.returns(self.BND1, self.RET, self.EXCL) > self.returns(self.BND2, self.RET, self.EXCL): self.selected_bond = self.BND1 if self.returns(self.STK1, self.RET, self.EXCL) < self.returns(self.STK2, self.RET, self.EXCL): self.selected_stock = self.STK2 elif self.returns(self.STK1, self.RET, self.EXCL) > self.returns(self.STK2, self.RET, self.EXCL): self.selected_stock = self.STK1 self.add_msg("Are we in a bull market ? " + str(self.bull) + "\n") for signal, status in extreme.items(): self.add_key_value_msg(signal, str(status)) self.send_message("calculate_signal called ") def trade_out(self): #self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " trade_out called") self.add_msg("trade_out called") # if bull is false if not self.bull: self.add_msg("Yes we are in a Bear Market! Need to Trade Out") # STK 1, STK 2, BND 1, BND 2 data = "Portfolio\n" data += "Symbol Weight\n" for sec in self.ASSETS: # Just bonds # set selected BOND to full weight and everything else to 0 self.wt[sec] = 0.99 if sec is self.selected_bond else 0 self.add_key_value_msg(str(sec), str(self.wt[sec])) self.trade() else: self.add_msg("Skipping trade out. We are in a Bull market.") self.send_message("called trade_out") def trade_in(self): #self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " trade_in called") self.add_msg("trade_in called") self.add_msg("") # if bull is true if self.bull: self.add_msg("Yes we are in a Bull Market! Trade in") # STK 1, STK 2, BND 1, BND 2 self.add_key_value_msg("Symbol", "Weight") for sec in self.ASSETS: # just stock # set selected STOCK to full weight and everything else to 0 self.wt[sec] = 0.99 if sec is self.selected_stock else 0 self.add_key_value_msg(str(sec), str(self.wt[sec])) self.trade() else: self.add_msg("Skipping trade in. We are in a bear market.") self.send_message("called trade_in") def trade(self): #self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " trade called") for sec, weight in self.wt.items(): # liquidate all 0 weight sec if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) # MAY BE REDUNDANT # if weight is 0 and we're long cond1 = weight == 0 and self.Portfolio[sec].IsLong # if weight is positive and not invested cond2 = weight > 0 and not self.Portfolio[sec].Invested # if condition is true, we will submit an order if cond1 or cond2: self.Debug(" SetHoldings Sec:"+str(sec)+" Weight:"+str(weight)) #self.Debug(sec) self.SetHoldings(sec, weight) def record_vars(self): #self.Debug(self.Time.strftime("%m/%d/%Y %A %H:%M:%S") + " record_vars called") #data = "record_vars called\n\n" hist = self.History([self.MKT], 2, Resolution.Daily)['close'].unstack(level= 0).dropna() # self.Debug(hist) self.spy.append(hist[self.MKT].iloc[-1]) spy_perf = self.spy[-1] / self.spy[0] * self.cap self.Plot("Strategy Equity", "SPY", spy_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue #data = "Total Portfolio Value:"+str(self.Portfolio.TotalPortfolioValue)+"\n" #data = "Total Holdings Value:"+str(self.Portfolio.TotalHoldingsValue)+"\n" self.add_key_value_msg("Total Portfolio Value:", str(self.Portfolio.TotalPortfolioValue)) self.add_key_value_msg("Total Holdings Value:", str(self.Portfolio.TotalHoldingsValue)) self.Plot('Holdings', 'leverage', round(account_leverage, 1)) for sec, weight in self.wt.items(): self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4) self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3)) self.send_message("called record_vars") def add_msg(self, msg): self.msg += "<tr><td colspan=\"2\">" + msg + "</td></tr>" def add_key_value_msg(self, key, value): self.msg += "<tr><td>" + key + "</td><td>" + value + "</td></tr>" def send_message(self, subject): body = "<html><body><table>" + self.msg + "</table></body></html>" self.Notify.Email("wberger@leadoutcome.com", subject, body); self.msg=""