Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0.979 Tracking Error 0.174 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# Plot PRICE, LSMA, PSAR of LSMA # --------------------------- STOCK = "QQQ"; PERIOD = 21; # --------------------------- class HmaPsarExtension(QCAlgorithm): def Initialize(self): self.SetStartDate(2022, 1, 1) self.SetEndDate(2022, 4, 14) res = Resolution.Daily self.stock = self.AddEquity(STOCK, res).Symbol self.SetWarmUp(2*PERIOD, res) self.lsma = self.LSMA(self.stock, PERIOD, res) self.lsma.Updated += self.parabolic_handler self.Parabolic_lsma = ParabolicStopAndReverse(0.02, 0.02, 0.2) def parabolic_handler(self, sender, bar): if self.lsma.IsReady: lsma = self.lsma.Current.Value trade_bar = TradeBar(bar.EndTime, self.stock, lsma, lsma, lsma, lsma, 0) self.Parabolic_lsma.Update(trade_bar) def OnData(self, data): if self.IsWarmingUp or not self.Parabolic_lsma: return price = self.Securities[self.stock].Price self.Plot(self.stock, "Price", price) self.Plot(self.stock, "LSMA", self.lsma.Current.Value) self.Plot(self.stock, "Parabolic of LSMA", self.Parabolic_lsma.Current.Value)