from System import *
from QuantConnect import *
from QuantConnect.Data.Consolidators import *
from QuantConnect.Data.Market import *
from QuantConnect.Orders import OrderStatus
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Indicators import *
import numpy as np
from datetime import timedelta, datetime
class MultipleSymbolConsolidationAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 3, 1) # Set Start Date\
self.SetEndDate(2021, 5, 1)
# Holds all of our data keyed by each symbol
self.Data = {}
# Contains all of our equity symbols
self.UniverseSettings.Resolution = Resolution.Minute
self.UniverseSettings.SetDataNormalizationMode = DataNormalizationMode.Raw
self.AddUniverseSelection(ScheduledUniverseSelectionModel(self.DateRules.Every(DayOfWeek.Monday),
self.TimeRules.At(0,0), self.CoarseSelectionFilter(self)))
self.__numberOfSymbols = 10
#self.Schedule.On(self.DateRules.On(2021, 3, 1), self.TimeRules.At(0, 0), self.CoarseSelectionFilter(self))
self.AddUniverse(self.CoarseSelectionFilter)
self.symbol = Symbol.Create("TSLA", SecurityType.Equity, Market.USA)
self.UniverseSettings.Leverage = 2
def CoarseSelectionFilter(self, coarse):
sortedByDollarVolume = sorted(coarse, key=lambda c: c.Volume, reverse=True)
filteredByPrice = [c.Symbol for c in sortedByDollarVolume if c.Price > 10 ]
return filteredByPrice[:self.__numberOfSymbols]
def OnSecuritiesChanged(self, changes):
# This is the period of bars we'll be creating
BarPeriod = TimeSpan.FromMinutes(10)
# This is the period of our sma indicators
SimpleMovingAveragePeriod = 20
# This is the number of consolidated bars we'll hold in symbol data for reference
RollingWindowSize = 10
for security in changes.AddedSecurities:
symbol = security.Symbol
self.Data[symbol] = SymbolData(self, symbol, BarPeriod, SimpleMovingAveragePeriod, RollingWindowSize)
for security in changes.RemovedSecurities:
symbol = security.Symbol
if symbol in self.Data:
self.SubscriptionManager.RemoveConsolidator(symbol, self.Data[symbol].consolidator)
symbolData = self.Data.pop(symbol, None)
if security.Invested:
self.Liquidate(symbol, "Universe Removed Security")
def OnDataConsolidated(self, sender, bar):
# Ver estos cambios
if bar.Symbol in self.Data:
self.Data[bar.Symbol].SMA.Update(bar.EndTime, bar.Close)
if self.Data[bar.Symbol].SMA.IsReady:
sma = self.Data[bar.Symbol].SMA.Current.Value
self.Data[bar.Symbol].HistoricalSMA.Add(sma)
self.Data[bar.Symbol].Bars.Add(bar)
# OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
# Argument "data": Slice object, dictionary object with your stock data
def OnData(self,data):
# loop through each symbol in our structure
for symbol, symbolData in self.Data.items():
# this check proves that this symbol was JUST updated prior to this OnData function being called
if symbolData.IsReady() and symbolData.WasJustUpdated(self.Time):
if not self.Portfolio[symbol].Invested:
self.SetHoldings(symbol, 0.09)
class SymbolData(object):
def __init__(self, algo, symbol, barPeriod, smaPeriod, windowSize):
self.Symbol = symbol
# The period used when population the Bars rolling window
self.BarPeriod = barPeriod
self.Bars = RollingWindow[IBaseDataBar](windowSize)
# The simple moving average indicator for our symbol
self.SMA = SimpleMovingAverage(algo.CreateIndicatorName(symbol, "SMA" + str(smaPeriod), Resolution.Minute), smaPeriod)
# define a consolidator to consolidate data for this symbol on the requested period
self.consolidator = TradeBarConsolidator(barPeriod)
# write up our consolidator to update the indicator
self.consolidator.DataConsolidated += algo.OnDataConsolidated
# we need to add this consolidator so it gets auto updates
algo.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
sma_lookback = 10
self.HistoricalSMA = RollingWindow[float](sma_lookback)
# Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
def IsReady(self):
return self.Bars.IsReady and self.SMA.IsReady and self.HistoricalSMA.IsReady
# Returns true if the most recent trade bar time matches the current time minus the bar's period, this
# indicates that update was just called on this instance
def WasJustUpdated(self, current):
return self.Bars.Count > 0 and self.Bars[0].Time == current - self.BarPeriod