Overall Statistics
Total Trades
0
Average Win
0%
Average Loss
0%
Compounding Annual Return
0%
Drawdown
0%
Expectancy
0
Net Profit
0%
Sharpe Ratio
0
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
0
Tracking Error
0
Treynor Ratio
0
Total Fees
$0.00
from TechnologyUniverseModule import TechnologyUniverseModule

class UncoupledTransdimensionalCoil(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2018, 12, 5)  # Set Start Date
        self.SetEndDate(2018, 12, 20)
        self.SetCash(100000)  # Set Strategy Cash
        # self.AddEquity("SPY", Resolution.Minute)
        self.SetUniverseSelection(TechnologyUniverseModule())


    def OnData(self, data):
        
        for key in data.Keys:
            self.Log(key.Value)
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel

class TechnologyUniverseModule(FundamentalUniverseSelectionModel):
    '''
    This module selects the most liquid stocks listed on the Nasdaq Stock Exchange.
    '''

    def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None):
        '''Initializes a new default instance of the TechnologyUniverseModule'''
        super().__init__(filterFineData, universeSettings, securityInitializer)
        self.numberOfSymbolsCoarse = 1000
        self.numberOfSymbolsFine = 100
        self.dollarVolumeBySymbol = {}
        self.symbols = []
        self.lastMonth = -1

    def SelectCoarse(self, algorithm, coarse):
        '''
        Performs a coarse selection:
        
        -The stock must have fundamental data
        -The stock must have positive previous-day close price
        -The stock must have positive volume on the previous trading day
        '''
        if algorithm.Time.month == self.lastMonth: 
            return self.symbols

        filtered = [x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0]
        sortedByDollarVolume = sorted(filtered, key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]

        self.symbols.clear()
        self.dollarVolumeBySymbol.clear()
        for x in sortedByDollarVolume:
            self.symbols.append(x.Symbol)
            self.dollarVolumeBySymbol[x.Symbol] = x.DollarVolume

        return self.symbols

    def SelectFine(self, algorithm, fine):
        '''
        Performs a fine selection:
        
        -The company's headquarter must in the U.S.
        -The stock must be traded on the NASDAQ stock exchange
        -At least half a year since its initial public offering
        -The stock must be in the Industry Template Code catagory N
        '''
        if algorithm.Time.month == self.lastMonth: 
            return self.symbols
        self.lastMonth = algorithm.Time.month

        # Filter stocks
        filteredFine = [x for x in fine if x.CompanyReference.CountryId == "USA"
                                        and (x.CompanyReference.PrimaryExchangeID == "NAS")
                                        and (algorithm.Time - x.SecurityReference.IPODate).days > 180
                                        and x.CompanyReference.IndustryTemplateCode == "N"]

        sortedByDollarVolume = []

        # Sort stocks on dollar volume
        sortedByDollarVolume = sorted(filteredFine, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True)
        
        self.symbols = [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]
        
        return self.symbols