Overall Statistics
Total Orders
629
Average Win
0.42%
Average Loss
-0.34%
Compounding Annual Return
54.121%
Drawdown
21.000%
Expectancy
0.349
Start Equity
1000000
End Equity
1540602.90
Net Profit
54.060%
Sharpe Ratio
1.5
Sortino Ratio
1.81
Probabilistic Sharpe Ratio
71.708%
Loss Rate
40%
Win Rate
60%
Profit-Loss Ratio
1.24
Alpha
0.1
Beta
1.749
Annual Standard Deviation
0.217
Annual Variance
0.047
Information Ratio
1.362
Tracking Error
0.145
Treynor Ratio
0.186
Total Fees
$1840.46
Estimated Strategy Capacity
$9000000.00
Lowest Capacity Asset
WMT R735QTJ8XC9X
Portfolio Turnover
9.99%
from datetime import timedelta
from AlgorithmImports import *

class Magnificent7IntradayStrategy(QCAlgorithm):
    def initialize(self):
        self.set_start_date(2023, 9, 1)
        self.set_end_date(2024, 9, 1)
        self.set_cash(1000000)
        
        self.symbols = [self.add_equity(ticker, Resolution.MINUTE).symbol for ticker in ["TSLA", "AMZN", "NFLX", "AAPL", "NVDA", "GOOGL", "MSFT", "META", "AVGO","WMT"]]
        
        self.rsi_indicators = {symbol: self.rsi(symbol, 14, MovingAverageType.WILDERS, Resolution.MINUTE) for symbol in self.symbols}
        self.sma_indicators = {symbol: self.sma(symbol, 200, Resolution.MINUTE) for symbol in self.symbols}
        
        self.schedule.on(self.date_rules.every_day(), self.time_rules.every(timedelta(minutes=15)), self.trade)
        
        self.set_universe_selection(ManualUniverseSelectionModel(*self.symbols))
        self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel())
        
        self.set_execution(ImmediateExecutionModel())

        # Schedule trading hours
        self.schedule.on(self.date_rules.every_day(), self.time_rules.every(timedelta(minutes=15)), self.trade)
        
        # Risk management
        self.set_risk_management(MaximumDrawdownPercentPerSecurity(0.02))
        
        self.last_trade_date = {symbol: None for symbol in self.symbols}
        self.settings.minimum_order_margin_portfolio_percentage = 0

    def trade(self):
        current_time = self.time
        if current_time.weekday() >= 5 or not (current_time.hour == 10 and current_time.minute >= 00):
            return
        for symbol in self.symbols:
            if not self.rsi_indicators[symbol].is_ready or not self.sma_indicators[symbol].is_ready:
                continue
            
            price = self.securities[symbol].price
            rsi_value = self.rsi_indicators[symbol].current.value
            sma_value = self.sma_indicators[symbol].current.value
            
            if self.last_trade_date[symbol] == current_time.date():
                continue
            
            if rsi_value < 35 and price < sma_value:
                self.set_holdings(symbol, 0.15)
                self.last_trade_date[symbol] = current_time.date()
            
            if self.portfolio[symbol].invested:
                
                if price >= rsi_value > 80:
                    self.liquidate(symbol)
                    self.last_trade_date[symbol] = current_time.date()  # Update trade date on exit