# region imports
from AlgorithmImports import *
# endregion
class FatRedMosquito(QCAlgorithm):
def initialize(self):
self.set_start_date(2022, 1, 1)
self.set_cash(100000)
self.universe_settings.resolution = Resolution.DAILY
# Gold miners ETF constituents
universe = self.add_universe(lambda fundamental: [x.symbol for x in sorted([x for x in fundamental if x.has_fundamental_data and x.price > 5], key=lambda x: x.dollar_volume)[:20]])
# Alpha specifically for gold miners
gold = self.add_equity("GLD", Resolution.DAILY).symbol
self.add_alpha(GoldMinerAlphaModel(gold, universe))
self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Expiry.END_OF_DAY))
class GoldMinerAlphaModel(AlphaModel):
def __init__(self, gold, universe):
'''Instantiate a new instance of GoldMinerAlphaModel
Parameter
---------
- gold: Symbol
Symbol of gold asset
- universe: Universe
A gold miner security universe reference that adapt GoldMinerAlphaModel
'''
self.gold = gold
self.universe = universe
def update(self, algorithm, data):
insights = []
if data.bars.contains_key(self.gold):
gold = algorithm.securities[self.gold]
gold_ema50 = gold.ema50.current.value
if data.bars[self.gold].close > gold_ema50:
insights.extend([
Insight.Price(member.key, timedelta(1), InsightDirection.UP) for member in self.universe.members
])
else:
insights.extend([
Insight.Price(member.key, timedelta(1), InsightDirection.DOWN) for member in self.universe.members
])
return insights
def on_securities_changed(self, algorithm, changes):
for added in changes.added_securities:
if added.symbol == self.gold:
added.ema50 = algorithm.EMA(added.symbol, 50, Resolution.DAILY)
algorithm.warm_up_indicator(added.symbol, added.ema50)