Overall Statistics |
Total Trades 76067 Average Win 0.01% Average Loss -0.01% Compounding Annual Return 10.973% Drawdown 26.800% Expectancy 0.122 Net Profit 68.299% Sharpe Ratio 0.859 Probabilistic Sharpe Ratio 33.849% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.24 Alpha 0.112 Beta -0.101 Annual Standard Deviation 0.112 Annual Variance 0.013 Information Ratio -0.291 Tracking Error 0.217 Treynor Ratio -0.958 Total Fees $84038.18 |
''' Ostirion Multiple Moving Averages Demostration version 1.0 Copyright (C) 2021 Ostirion This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. Contact: www.ostirion.net/contact ''' from Execution.ImmediateExecutionModel import ImmediateExecutionModel import numpy as np import pandas as pd from CustomUniverseSelectionModel import CustomUniverseSelectionModel as CU class OptimumSupports(QCAlgorithm): def Initialize(self): self.test_years = 5 self.SetStartDate(datetime.today() - timedelta(days=365*5)) self.SetEndDate(datetime.today()) self.SetCash(1000000) res = Resolution.Daily self.AddUniverseSelection(CU(100)) self.UniverseSettings.Resolution = res self.SetBrokerageModel(AlphaStreamsBrokerageModel()) self.AddAlpha(SRAlphaModel()) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel()) class SRAlphaModel(AlphaModel): def __init__(self): self.symbol_data = {} self.training_length = 1100 self.windows = np.linspace(5,100,20).astype(int) self.day_counter = 0 self.training_period = 60 def Update(self, algorithm, data): self.day_counter += 1 insights = [] if data.HasData == False: return [] # Find the symbols that have all data: common_list = list(set(data.Keys).intersection(self.symbol_data.keys())) for s in common_list: if not data.get(s): continue s_data = self.symbol_data.get(s) past_status = s_data.ma_status current_status = data.get(s).Close > s_data.ma.Current.Value s_data.ma_status = data.get(s).Close > s_data.ma.Current.Value #Retrain symbol if needed: if self.day_counter%self.training_period == 0: algorithm.Debug('Retraining...') history = algorithm.History(s, self.training_length, Resolution.Daily) best_period = self.FindBestAverage(history, self.windows) s_data = SymbolData(s, algorithm, best_period) s_data.best_period = best_period # Warm-up indicators for added securities s_data.WarmUpIndicators(history) if algorithm.Securities.get(s).Invested: continue if current_status == past_status: continue if current_status: # Crossing up: moves down d = InsightDirection.Down else: d = InsightDirection.Up period = timedelta(days=int(s_data.best_period)) # Skip erroneous averages. if period == -1: continue insight = Insight(s, period, InsightType.Price, d, 0.02, 1,"EMA Balance", 1.00) insights.append(insight) return insights def OnSecuritiesChanged(self, algorithm, changes): for security in changes.AddedSecurities: if security.Symbol not in self.symbol_data: history = algorithm.History(security.Symbol, self.training_length, Resolution.Daily) # Error in history length: if history.empty: continue best_period = self.FindBestAverage(history, self.windows) if best_period == -1: continue self.symbol_data[security.Symbol] = SymbolData(security.Symbol, algorithm, best_period) self.symbol_data[security.Symbol].best_period = best_period # Warm-up indicators for added securities self.symbol_data.get(security.Symbol).WarmUpIndicators(history) for security in changes.RemovedSecurities: if security.Symbol in self.symbol_data: self.symbol_data.pop(security.Symbol) return def FindBestAverage(self, history, windows): prices = history['close'].unstack(level=0) if len(prices) < 100: #Insufficient history length. return -1 averages = prices.copy() for win in windows: averages['MA_' + str(win)] = prices.rolling(window=win).mean() averages.dropna(inplace=True) price_col = prices.columns[0] for win in windows: averages['d_MA_'+str(win)] = averages[price_col] - averages['MA_' + str(win)] shift = averages['d_MA_'+str(win)].shift(1) diff = averages['d_MA_'+str(win)] averages['c_'+str(win)] = np.sign(shift) != np.sign(diff) cross_columns = [col for col in averages.columns if 'c_' in col] rates = {} for column in cross_columns: rates[column] = averages[column].value_counts(normalize=True)[True] results = {} for window in windows: results[window] = averages[[price_col, 'MA_'+str(window), 'd_MA_'+str(window), 'c_'+str(window)]] averages[str(window)+'_f'] = averages[price_col].shift(-window) averages['ctype_'+str(window)] = averages['d_MA_'+str(window)] > 0 averages['FPdir_'+str(window)] = averages[str(window)+'_f'] > averages[price_col] averages['H_'+str(window)] = averages['ctype_'+str(window)] != averages['FPdir_'+str(window)] try: res = averages['H_'+str(window)].value_counts(normalize=True)[True] results[window]=res except: # There are no True values: results[window]=-1 return max(results, key=results.get) class SymbolData(object): def __init__(self, symbol, algorithm, period): self.symbol = symbol self.ma = algorithm.SMA(self.symbol, period, Resolution.Daily) self.ma_status = True self.best_period = False def WarmUpIndicators(self, history): if self.symbol in history.index: for time, row in history.loc[str(self.symbol)].iterrows(): if not history.empty: self.ma.Update(time, row["close"])
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel from itertools import groupby from math import ceil class CustomUniverseSelectionModel(FundamentalUniverseSelectionModel): '''Defines the QC500 universe as a universe selection model for framework algorithm For details: https://github.com/QuantConnect/Lean/pull/1663''' def __init__(self, number, filterFineData = True, universeSettings = None, securityInitializer = None): '''Initializes a new default instance of the QC500UniverseSelectionModel''' super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = 1000 self.numberOfSymbolsFine = number self.dollarVolumeBySymbol = {} self.lastMonth = -1 def SelectCoarse(self, algorithm, coarse): '''Performs coarse selection for the QC500 constituents. The stocks must have fundamental data The stock must have positive previous-day close price The stock must have positive volume on the previous trading day''' if algorithm.Time.month == self.lastMonth: return Universe.Unchanged sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume} # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated if len(self.dollarVolumeBySymbol) == 0: return Universe.Unchanged # return the symbol objects our sorted collection return list(self.dollarVolumeBySymbol.keys()) def SelectFine(self, algorithm, fine): '''Performs fine selection for the QC500 constituents The company's headquarter must in the U.S. The stock must be traded on either the NYSE or NASDAQ At least half a year since its initial public offering The stock's market cap must be greater than 500 million''' sortedBySector = sorted([x for x in fine if x.CompanyReference.CountryId == "USA" and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"] and (algorithm.Time - x.SecurityReference.IPODate).days > 180 and x.MarketCap > 5e8], key = lambda x: x.CompanyReference.IndustryTemplateCode) count = len(sortedBySector) # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated if count == 0: return Universe.Unchanged # Update self.lastMonth after all QC500 criteria checks passed self.lastMonth = algorithm.Time.month percent = self.numberOfSymbolsFine / count sortedByDollarVolume = [] # select stocks with top dollar volume in every single sector for code, g in groupby(sortedBySector, lambda x: x.CompanyReference.IndustryTemplateCode): y = sorted(g, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse = True) c = ceil(len(y) * percent) sortedByDollarVolume.extend(y[:c]) sortedByDollarVolume = sorted(sortedByDollarVolume, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]