Overall Statistics |
Total Trades 611 Average Win 0.20% Average Loss -0.24% Compounding Annual Return 6.149% Drawdown 9.800% Expectancy 0.581 Net Profit 92.817% Sharpe Ratio 1.151 Loss Rate 15% Win Rate 85% Profit-Loss Ratio 0.85 Alpha 0.011 Beta 2.479 Annual Standard Deviation 0.052 Annual Variance 0.003 Information Ratio 0.774 Tracking Error 0.052 Treynor Ratio 0.024 Total Fees $620.19 |
from math import ceil,floor,isnan from datetime import datetime import pandas as pd import numpy as np from scipy.optimize import minimize class AssetAllocationAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2007,1,1) #Set Start Date self.SetEndDate(2018,1,1) #Set End Date self.SetCash(100000) #Set Strategy Cash tickers = ["IEF", "TLT", "SPY", "EFA", "EEM", "JPXN", "XLK", "GLD", "IGV", "XBI"] self.symbols = [] for i in tickers: self.symbols.append(self.AddEquity(i, Resolution.Daily).Symbol) for syl in self.symbols: syl.window = RollingWindow[TradeBar](252) self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalancing)) def OnData(self, data): if data.ContainsKey("SPY"): for syl in self.symbols: syl.window.Add(data[syl]) def Rebalancing(self): data = {} for syl in self.symbols: data[syl] = [float(i.Close) for i in syl.window] df_price = pd.DataFrame(data,columns=data.keys()) daily_return = (df_price / df_price.shift(1)).dropna() a = PortfolioOptimization(daily_return, 0, len(data)) opt_weight = a.opt_portfolio() if isnan(sum(opt_weight)): return self.Log(str(opt_weight)) for i in range(len(data)): self.SetHoldings(df_price.columns[i], opt_weight[i]) # equally weighted # self.SetHoldings(self.symbols[i], 1.0/len(data)) class PortfolioOptimization(object): import numpy as np import pandas as pd def __init__(self, df_return, risk_free_rate, num_assets): self.daily_return = df_return self.risk_free_rate = risk_free_rate self.n = num_assets # numbers of risk assets in portfolio self.target_vol = 0.15 def annual_port_return(self, weights): # calculate the annual return of portfolio return np.sum(self.daily_return.mean() * weights) * 252 def annual_port_vol(self, weights): # calculate the annual volatility of portfolio return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights))) def min_func(self, weights): # method 1: maximize sharp ratio return - self.annual_port_return(weights) / self.annual_port_vol(weights) # # method 2: maximize the return with target volatility # return - self.annual_port_return(weights) / self.target_vol def opt_portfolio(self): # maximize the sharpe ratio to find the optimal weights cons = ({'type': 'eq', 'fun': lambda x: np.sum(np.abs(x)) - 1}) bnds = [(0, 1)] * self.n opt = minimize(self.min_func, # object function np.array(self.n * [1. / self.n]), # initial value method='SLSQP', # optimization method bounds=bnds, # bounds for variables constraints=cons) # constraint conditions opt_weights = opt['x'] return opt_weights