Overall Statistics
Total Orders
1454
Average Win
4.62%
Average Loss
-2.36%
Compounding Annual Return
54.509%
Drawdown
53.700%
Expectancy
0.415
Start Equity
1000000.00
End Equity
2209215.00
Net Profit
120.922%
Sharpe Ratio
0.977
Sortino Ratio
1.023
Probabilistic Sharpe Ratio
40.626%
Loss Rate
52%
Win Rate
48%
Profit-Loss Ratio
1.96
Alpha
0.35
Beta
1.35
Annual Standard Deviation
0.545
Annual Variance
0.297
Information Ratio
0.754
Tracking Error
0.527
Treynor Ratio
0.394
Total Fees
$29029.57
Estimated Strategy Capacity
$750000.00
Lowest Capacity Asset
LB YJOKFAA53YW5
Portfolio Turnover
11.59%
#region imports
from AlgorithmImports import *
#endregion

class DiversifiedTradingStrategy(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2023, 1, 1)
        self.SetCash(1000000)
        
        self.Settings.FreePortfolioValuePercentage = 0.05
        self.positionSizePercent = 0.25  # Allocate 25% to each class
        self.momentum_entry = 60
        self.oversold_entry = 20
        self.momentum_exit = 40
        self.overbought_exit = 80
        self.minimumVolume = 50000

        # Define universes
        self.crypto_universe = ['BTCUSD', 'LTCUSD', 'ETHUSD', 'ETCUSD', 'RRTUSD', 'ZECUSD', 'XMRUSD', 'XRPUSD', 'EOSUSD', 
                    'SANUSD', 'OMGUSD', 'NEOUSD', 'ETPUSD', 'BTGUSD', 'SNTUSD', 'BATUSD', 'FUNUSD', 'ZRXUSD', 
                    'TRXUSD', 'REQUSD', 'LRCUSD', 'WAXUSD', 'DAIUSD', 'BFTUSD', 'ODEUSD', 'ANTUSD', 'XLMUSD', 
                    'XVGUSD', 'MKRUSD', 'KNCUSD', 'LYMUSD', 'UTKUSD', 'VEEUSD', 'ESSUSD', 'IQXUSD', 'ZILUSD', 
                    'BNTUSD', 'XRAUSD', 'VETUSD', 'GOTUSD', 'XTZUSD', 'MLNUSD', 'PNKUSD', 'DGBUSD', 'BSVUSD', 
                    'ENJUSD', 'PAXUSD']
        self.stock_universe = ['AAPL', 'MSFT', 'GOOG', "TSLA", "NVDA", "META", "COIN", "GOOG", "SAVA", "OXY", "CHGG", "AMD",
                    "PALAF", "SOFI", "AWZN", "AZO", "CHWY", "ETSY", "MGM", "JPM", "MA", "XOM", "BKR",
                    "NEE", "IART", "HEI", "HWM", "SBGSF", "ECL", "NFLX", "TSN", "VST", "CEG", "PLNT",
                    "CRM", "NOW"]
        self.index_universe = ['DODFX', 'ACMVX', 'PRFHX', 'VOOG', 'SCHG', 'VGT', 'SCHD', 'SDY', 'VYM', 'FCNTX', 'AGTHX',
                    'TRBCX', 'VTWAX', 'VCLT', 'VEXAX', 'FTIHX', 'VBR', 'FSENX', 'FSPCX', 'FMILX']
        self.commodities_universe = ['CL', 'NG', 'GC', 'SI', 'HG', 'AL', 'PL', 'PA', 'ZC', 'ZW', 'ZS', 'KC', 'SB', 'CT',
                    'CC', 'RR', 'O', 'LB', 'RU', 'EH', 'LC', 'LH', 'FC', 'OJ', 'WO', 'CA', 'NI', 'ZI', 'LD', 'TN']

        self.pairs = []
        self.AddUniverse(self.crypto_universe, self.AddCrypto, "Crypto")
        self.AddUniverse(self.stock_universe, self.AddEquity, "Stock")
        self.AddUniverse(self.index_universe, self.AddEquity, "Index")
        self.AddUniverse(self.commodities_universe, self.AddEquity, "Commodity")

        self.SetBenchmark(self.AddEquity('SPY').Symbol)
        self.SetWarmup(30)
        self.Debug("Initialization complete")

    def AddUniverse(self, universe, addMethod, universeName):
        for ticker in universe:
            try:
                pair = Pair(self, addMethod(ticker).Symbol, self.minimumVolume, universeName)
                self.pairs.append(pair)
                self.Debug(f"Added {ticker} to {universeName} universe")
            except Exception as e:
                self.Debug(f"Failed to add {ticker} to {universeName} universe: {str(e)}")


    def OnData(self, data):
        if self.IsWarmingUp:
            return

        allocation_per_class = self.Portfolio.TotalPortfolioValue * self.positionSizePercent

        # Track allocation by asset class
        class_allocations = {"Crypto": 0, "Stock": 0, "Index": 0, "Commodity": 0}

        for pair in self.pairs:
            if not pair.rsi.IsReady or not pair.Investable():
                continue

            symbol = pair.symbol
            rsi = pair.rsi.Current.Value
            universe_name = pair.universe_name

            if not pair.higher_high:
                continue

            rsi_decreasing = pair.previous_rsi is not None and rsi < pair.previous_rsi
            rsi_increasing = pair.previous_rsi is not None and rsi > pair.previous_rsi
            pair.previous_rsi = rsi

            # Buying logic
            if class_allocations[universe_name] < allocation_per_class:
                if rsi_increasing and rsi > self.momentum_entry and rsi < self.overbought_exit:
                    allocation = allocation_per_class - class_allocations[universe_name]
                    quantity = allocation / self.Securities[symbol].Price
                    self.Buy(symbol, quantity)
                    class_allocations[universe_name] += allocation
                
                elif rsi_decreasing and rsi < self.oversold_entry:
                    allocation = allocation_per_class - class_allocations[universe_name]
                    quantity = allocation / self.Securities[symbol].Price
                    self.Buy(symbol, quantity)
                    class_allocations[universe_name] += allocation

            # Liquidation logic
            if self.Portfolio[symbol].Invested:
                if rsi > self.overbought_exit and rsi_increasing:
                    self.Liquidate(symbol)
                elif rsi < self.momentum_exit and rsi_decreasing:
                    self.Liquidate(symbol)

class Pair:
    def __init__(self, algorithm, symbol, minimumVolume, universe_name=None):
        self.algorithm = algorithm
        self.symbol = symbol
        self.universe_name = universe_name
        self.minimumVolume = minimumVolume
        self.rsi = algorithm.RSI(self.symbol, 14, MovingAverageType.Simple, Resolution.Daily)
        self.volume = algorithm.SMA(self.symbol, 30, Resolution.Daily, Field.Volume)
        self.previous_rsi = None

        # Biweekly consolidator setup
        self.biweekly_consolidator = TradeBarConsolidator(timedelta(days=14))
        algorithm.SubscriptionManager.AddConsolidator(self.symbol, self.biweekly_consolidator)
        self.biweekly_consolidator.DataConsolidated += self.OnBiweeklyBar
        self.current_biweek = {"high": None, "low" : None}
        self.previous_biweek = {"high": None, "low" : None}
        self.higher_high = False
        self.lower_low = False
    
    def OnBiweeklyBar(self, sender, bar):
        # Check for valid high prices
        if bar.High is not None and bar.Low is not None:
            self.previous_biweek = self.current_biweek.copy()
            self.current_biweek["high"] = bar.High
            self.current_biweek["low"] = bar.Low

        # Check for higher highs
        if self.previous_biweek["high"] is not None:
            self.higher_high = self.current_biweek["high"] > self.previous_biweek["high"]
            self.lower_low = self.current_biweek["low"] < self.previous_biweek["low"]
            if self.higher_high:
                self.algorithm.Debug(f"Higher high detected for {self.symbol}: {self.current_biweek['high']}")
            if self.lower_low:
                self.algorithm.Debug(f"Lower low detected for {self.symbol}: {self.current_biweek['low']}")

    def Investable(self):
        # Ensure indicators are ready
        if not self.volume.IsReady or not self.rsi.IsReady:
            return False
        return self.volume.Current.Value > self.minimumVolume