Overall Statistics
Total Trades
327
Average Win
2.89%
Average Loss
-1.90%
Compounding Annual Return
17.951%
Drawdown
29.900%
Expectancy
0.253
Net Profit
101.877%
Sharpe Ratio
0.816
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
1.52
Alpha
0.162
Beta
-0.101
Annual Standard Deviation
0.187
Annual Variance
0.035
Information Ratio
0.267
Tracking Error
0.227
Treynor Ratio
-1.504
Total Fees
$6556.98
import numpy as np
import pandas as pd
import datetime as datetime
import statsmodels.formula.api as sm
import statsmodels.tsa.stattools as ts
from pair import *

class PairsTrading(QCAlgorithm):

    def __init__(self):
		self.symbols = [
        'ASB', 'AF', 'BANC', 'BBVA', 'BBD', 'BCH', 'BLX', 'BSBR', 'BSAC', 'SAN',
        'CIB', 'BXS', 'BAC', 'BOH', 'BMO', 'NTB', 'BK', 'BNS', 'BKU', 'BCS', 'BBT',
        'BFR', 'CM', 'COF', 'C', 'CFG', 'CMA', 'CBU', 'CPF', 'BAP', 'CFR', 'CUBI',
        'DKT', 'DB', 'EVER', 'FNB', 'FBK', 'FCB', 'FBP', 'FCF', 'FHN', 'FBC', 'FSB',
        'GWB', 'AVAL', 'BSMX', 'SUPV', 'HDB', 'HTH', 'HSBC', 'IBN', 'ING', 'ITUB', 'JPM',
        'KB', 'KEY', 'LYG', 'MTB', 'BMA', 'MFCB', 'MSL', 'MTU', 'MFG', 'NBHC', 'OFG', 'PNC',
        'PVTD', 'PB', 'PFS', 'RF', 'RY', 'RBS', 'SHG', 'STT', 'STL', 'SCNB', 'SMFG', 'STI',
        'SNV', 'TCB', 'TD', 'USB', 'UBS', 'VLY', 'WFC', 'WAL', 'WBK', 'WF', 'YDKN', 'ZBK']
		self.data_resolution = 10
		self.num_bar = 6.5*60*60/(self.data_resolution)
		self.one_month = 6.5*20*60/(self.data_resolution)
		self.selected_num = 10
		self.pair_num = 120
		self.pair_threshod = 0.88
		self.BIC = -3.34
		self.count = 0
		self.pair_list = []
		self.selected_pair = []
		self.trading_pairs = []
		self.generate_count = 0
		self.open_size = 3
		self.close_size = 0.5
		self.stop_loss = 6
		self.data_count = 0

    def Initialize(self):
    	self.SetStartDate(2012,9,1)
    	self.SetEndDate(2016,12,1)
    	self.SetCash(50000)

    	for i in range(len(self.symbols)):
    		equity = self.AddEquity(self.symbols[i],Resolution.Minute).Symbol
    		self.symbols[i] = equity
    		self.symbols[i].prices = []
    		self.symbols[i].dates = []


    def generate_pairs(self):
        for i in range(len(self.symbols)):
            for j in range(i+1,len(self.symbols)):
                self.pair_list.append(pairs(self.symbols[i],self.symbols[j]))

        self.pair_list = [x for x in self.pair_list if x.cor > self.pair_threshod]
        
        self.pair_list.sort(key = lambda x: x.cor, reverse = True)

        if len(self.pair_list) > self.pair_num:
        	self.pair_list = self.pair_list[:self.pair_num]


    def pair_clean(self,list):
    	l = []
    	l.append(list[0])
    	for i in list:
    		symbols = [x.a for x in l] + [x.b for x in l]
    		if i.a not in symbols and i.b not in symbols:
    			l.append(i)
    		else:
    			pass
    	return l

    def OnData(self,data):
    	if not self.Securities[self.symbols[0]].Exchange.ExchangeOpen:
    		return
    	#data aggregation
    	if self.data_count < self.data_resolution:
    		self.data_count +=1
    		return
    	# refill the initial df
    	if len(self.symbols[0].prices) < self.num_bar:
    		for i in self.symbols:
    			if data.ContainsKey(i) is True:
    				i.prices.append(float(data[i].Close))
    				i.dates.append(data[i].EndTime)
    			else:
    				self.Log('%s is missing'%str(i))
    				self.symbols.remove(i)
    		self.data_count = 0
    		return
    	# generate paris
    	if self.count == 0 and len(self.symbols[0].prices) == self.num_bar:
    		if self.generate_count == 0:
    			for i in self.symbols:
    				i.df = pd.DataFrame(i.prices, index = i.dates, columns = ['%s'%str(i)])

    			self.generate_pairs()
    			self.generate_count +=1


    		self.Log('pair list length:'+str(len(self.pair_list)))
    	# correlation selection
    		for i in self.pair_list:
    			i.cor_update()
    	# updatet the dataframe and correlation selection
    		if len(self.pair_list[0].a_price) != 0:
    			for i in self.pair_list:
    				i.df_update()
    				i.cor_update()

    		self.selected_pair = [x for x in self.pair_list if x.cor > 0.9]
    	# cointegration selection
    		for i in self.selected_pair:
    			i.cointegration_test()

    		self.selected_pair = [x for x in self.selected_pair if x.adf < self.BIC]
    		self.selected_pair.sort(key = lambda x: x.adf)

    		if len(self.selected_pair) == 0:
    			self.Log('no selected pair')
    			self.count += 1
    			return

    		self.selected_pair = self.pair_clean(self.selected_pair)
    		for i in self.selected_pair:
    			i.touch = 0
    			self.Log(str(i.adf) + i.name)

    		if len(self.selected_pair) > self.selected_num:
    			self.selected_pair = self.selected_pair[:self.selected_num]

    		self.count +=1
    		self.data_count = 0
    		return

    	#update the pairs
    	if self.count != 0 and self.count < self.one_month:

    		num_select = len(self.selected_pair)

    		for i in self.pair_list:
    			if data.ContainsKey(i.a) is True and data.ContainsKey(i.b) is True:
    				i.price_record(data[i.a],data[i.b])
    			else:
    				self.Log('%s has no data'%str(i.name))
    				self.pair_list.remove(i)
    	## selected pairs

    		for i in self.selected_pair:
    			i.last_error = i.error

    		for i in self.trading_pairs:
    			i.last_error = i.error

    	## enter
    		for i in self.selected_pair:
    			price_a = float(data[i.a].Close)
    			price_b = float(data[i.b].Close)
    			i.error = price_a - (i.model.params[0] + i.model.params[1]*price_b)
    			if (self.Portfolio[i.a].Quantity == 0 and self.Portfolio[i.b].Quantity == 0) and i not in self.trading_pairs:
    				if i.touch == 0:
    					if i.error < i.mean_error - self.open_size*i.sd and i.last_error > i.mean_error - self.open_size*i.sd:
    						i.touch += -1
    					elif i.error > i.mean_error + self.open_size*i.sd and i.last_error < i.mean_error + self.open_size*i.sd:
    						i.touch += 1
    					else:
    						pass
    				elif i.touch == -1:
    					if i.error > i.mean_error - self.open_size*i.sd and i.last_error < i.mean_error - self.open_size*i.sd:
	    					self.Log('long %s and short %s'%(str(i.a),str(i.b)))
	    					i.record_model = i.model
	    					i.record_mean_error = i.mean_error
	    					i.record_sd = i.sd
	    					self.trading_pairs.append(i)
	    					self.SetHoldings(i.a, 5.0/(len(self.selected_pair)))
	    					self.SetHoldings(i.b, -5.0/(len(self.selected_pair)))
	    					i.touch = 0
	    			elif i.touch == 1:
	    				if i.error < i.mean_error + self.open_size*i.sd and i.last_error > i.mean_error + self.open_size*i.sd:
	    					self.Log('long %s and short %s'%(str(i.b),str(i.a)))
	    					i.record_model = i.model
	    					i.record_mean_error = i.mean_error
	    					i.record_sd = i.sd
	    					self.trading_pairs.append(i)
	    					self.SetHoldings(i.b, 5.0/(len(self.selected_pair)))
	    					self.SetHoldings(i.a, -5.0/(len(self.selected_pair)))
	    					i.touch = 0
	    			else:
	    			    pass
	    		else:
	    			pass

    		# close
    		for i in self.trading_pairs:
    			price_a = float(data[i.a].Close)
    			price_b = float(data[i.b].Close)
    			i.error = price_a - (i.record_model.params[0] + i.record_model.params[1]*price_b)
    			if ((i.error < i.record_mean_error + self.close_size*i.record_sd and i.last_error >i.record_mean_error + self.close_size*i.record_sd)
    			   or (i.error > i.record_mean_error - self.close_size*i.record_sd and i.last_error <i.record_mean_error - self.close_size*i.record_sd)):
    				self.Log('close %s'%str(i.name))
    				self.Liquidate(i.a)
    				self.Liquidate(i.b)
    				self.trading_pairs.remove(i)
    			elif i.error < i.record_mean_error - self.stop_loss*i.record_sd or i.error > i.record_mean_error + self.stop_loss*i.record_sd:
    				self.Log('close %s to stop loss'%str(i.name))
    				self.Liquidate(i.a)
    				self.Liquidate(i.b)
    				self.trading_pairs.remove(i)
    			else:
    				pass




    		self.count +=1
    		self.data_count = 0
    		return

    	if self.count == self.one_month:
    		self.count = 0
    		self.data_count = 0
    		return
import numpy as np
import pandas as pd
import datetime as datetime
import statsmodels.formula.api as sm
import statsmodels.tsa.stattools as ts

class pairs(object):

	def __init__(self,a,b):
		self.a = a
		self.b = b
		self.name = str(a) + ':' + str(b)
		self.df = pd.concat([a.df,b.df],axis = 1).dropna()
		self.num_bar = self.df.shape[0]
		self.cor = self.df.corr().ix[0][1]
		self.error = 0
		self.last_error = 0
		self.a_price = []
		self.a_date = []
		self.b_price = []
		self.b_date = []

	def cor_update(self):
		self.cor = self.df.corr().ix[0][1]

	def cointegration_test(self):
		self.model = sm.ols(formula = '%s ~ %s'%(str(self.a),str(self.b)), data = self.df).fit()
		self.adf = ts.adfuller(self.model.resid,autolag = 'BIC')[0]
		self.mean_error = np.mean(self.model.resid)
		self.sd = np.std(self.model.resid)

	def price_record(self,data_a,data_b):
		self.a_price.append(float(data_a.Close))
		self.a_date.append(data_a.EndTime)
		self.b_price.append(float(data_b.Close))
		self.b_date.append(data_b.EndTime)

	def df_update(self):
		new_df = pd.DataFrame({str(self.a):self.a_price,str(self.b):self.b_price},index = [self.a_date]).dropna()
		self.df = pd.concat([self.df,new_df])
		self.df = self.df.tail(self.num_bar)
		for i in [self.a_price,self.a_date,self.b_price,self.b_date]:
			i = []