Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -2.237 Tracking Error 0.13 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 |
# Standard Deviation Bands of EMA class StandardDeviationBands_of_EMA(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 1, 1) self.SetEndDate(2021, 5, 11) self.SetCash(100000) res = Resolution.Daily self.stock = self.AddEquity('SPY', res).Symbol period = 21 self.SetWarmUp(period * 5) self.price = self.Identity(self.stock) self.ema = self.EMA(self.stock, period, res) self.std = self.STD(self.stock, period, res) self.ema_std = IndicatorExtensions.Of(self.std, self.ema) def OnData(self, data): if self.IsWarmingUp or not (self.ema.IsReady and self.ema_std.IsReady): return self.Plot('STD BANDS OF EMA', 'ema', self.ema.Current.Value) self.Plot('STD BANDS OF EMA', 'upper band', self.ema.Current.Value + self.ema_std.Current.Value) self.Plot('STD BANDS OF EMA', 'lower band', self.ema.Current.Value - self.ema_std.Current.Value) self.Plot('STD BANDS OF EMA', 'price', self.price.Current.Value)