Overall Statistics
Total Trades
175
Average Win
18.58%
Average Loss
-7.00%
Compounding Annual Return
178.304%
Drawdown
57.000%
Expectancy
0.722
Net Profit
2975.910%
Sharpe Ratio
2.32
Probabilistic Sharpe Ratio
83.874%
Loss Rate
53%
Win Rate
47%
Profit-Loss Ratio
2.65
Alpha
1.452
Beta
0.062
Annual Standard Deviation
0.628
Annual Variance
0.395
Information Ratio
2.122
Tracking Error
0.648
Treynor Ratio
23.643
Total Fees
$26826.03
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import talib

class renko:      
    def __init__(self):
        self.source_prices = []
        self.renko_prices = []
        self.renko_directions = []
    
    # Setting brick size. Auto mode is preferred, it uses history
    def set_brick_size(self, HLC_history = None, auto = True, brick_size = 10.0):
        if auto == True:
            self.brick_size = self.__get_optimal_brick_size(HLC_history.iloc[:, [0, 1, 2]])
        else:
            self.brick_size = brick_size
        return self.brick_size
    
    def __renko_rule(self, last_price):
        # Get the gap between two prices
        gap_div = int(float(last_price - self.renko_prices[-1]) / self.brick_size)
        is_new_brick = False
        start_brick = 0
        num_new_bars = 0

        # When we have some gap in prices
        if gap_div != 0:
            # Forward any direction (up or down)
            if (gap_div > 0 and (self.renko_directions[-1] > 0 or self.renko_directions[-1] == 0)) or (gap_div < 0 and (self.renko_directions[-1] < 0 or self.renko_directions[-1] == 0)):
                num_new_bars = gap_div
                is_new_brick = True
                start_brick = 0
            # Backward direction (up -> down or down -> up)
            elif np.abs(gap_div) >= 2: # Should be double gap at least
                num_new_bars = gap_div
                num_new_bars -= np.sign(gap_div)
                start_brick = 2
                is_new_brick = True
                self.renko_prices.append(self.renko_prices[-1] + 2 * self.brick_size * np.sign(gap_div))
                self.renko_directions.append(np.sign(gap_div))
            #else:
                #num_new_bars = 0

            if is_new_brick:
                # Add each brick
                for d in range(start_brick, np.abs(gap_div)):
                    self.renko_prices.append(self.renko_prices[-1] + self.brick_size * np.sign(gap_div))
                    self.renko_directions.append(np.sign(gap_div))
        
        return num_new_bars
                
    # Getting renko on history
    def build_history(self, prices):
        if len(prices) > 0:
            # Init by start values
            self.source_prices = prices
            self.renko_prices.append(prices.iloc[0])
            self.renko_directions.append(0)
        
            # For each price in history
            for p in self.source_prices[1:]:
                self.__renko_rule(p)
        
        return len(self.renko_prices)
    
    # Getting next renko value for last price
    def do_next(self, last_price):
        if len(self.renko_prices) == 0:
            self.source_prices.append(last_price)
            self.renko_prices.append(last_price)
            self.renko_directions.append(0)
            return 1
        else:
            self.source_prices.append(last_price)
            return self.__renko_rule(last_price)
    
    # Simple method to get optimal brick size based on ATR
    def __get_optimal_brick_size(self, HLC_history, atr_timeperiod = 14):
        brick_size = 0.0
        
        # If we have enough of data
        if HLC_history.shape[0] > atr_timeperiod:
            brick_size = np.median(talib.ATR(high = np.double(HLC_history.iloc[:, 0]), 
                                             low = np.double(HLC_history.iloc[:, 1]), 
                                             close = np.double(HLC_history.iloc[:, 2]), 
                                             timeperiod = atr_timeperiod)[atr_timeperiod:])
        
        return brick_size

    def evaluate(self, method = 'simple'):
        balance = 0
        sign_changes = 0
        price_ratio = len(self.source_prices) / len(self.renko_prices)

        if method == 'simple':
            for i in range(2, len(self.renko_directions)):
                if self.renko_directions[i] == self.renko_directions[i - 1]:
                    balance = balance + 1
                else:
                    balance = balance - 2
                    sign_changes = sign_changes + 1

            if sign_changes == 0:
                sign_changes = 1

            score = balance / sign_changes
            if score >= 0 and price_ratio >= 1:
                score = np.log(score + 1) * np.log(price_ratio)
            else:
                score = -1.0

            return {'balance': balance, 'sign_changes:': sign_changes, 
                    'price_ratio': price_ratio, 'score': score}
    
    def get_renko_prices(self):
        return self.renko_prices
    
    def get_renko_directions(self):
        return self.renko_directions
    
    def plot_renko(self, col_up = 'g', col_down = 'r'):
        fig, ax = plt.subplots(1, figsize=(20, 10))
        ax.set_title('Renko chart')
        ax.set_xlabel('Renko bars')
        ax.set_ylabel('Price')

        # Calculate the limits of axes
        ax.set_xlim(0.0, 
                    len(self.renko_prices) + 1.0)
        ax.set_ylim(np.min(self.renko_prices) - 3.0 * self.brick_size, 
                    np.max(self.renko_prices) + 3.0 * self.brick_size)
        
        # Plot each renko bar
        for i in range(1, len(self.renko_prices)):
            # Set basic params for patch rectangle
            col = col_up if self.renko_directions[i] == 1 else col_down
            x = i
            y = self.renko_prices[i] - self.brick_size if self.renko_directions[i] == 1 else self.renko_prices[i]
            height = self.brick_size
                
            # Draw bar with params
            ax.add_patch(
                patches.Rectangle(
                    (x, y),   # (x,y)
                    1.0,     # width
                    self.brick_size, # height
                    facecolor = col
                )
            )
        
        plt.show()
from datetime import datetime, timedelta
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Indicators")

from System import *
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Data import *
from QuantConnect.Data.Market import *
from QuantConnect.Data.Custom import *
from QuantConnect.Algorithm import *
from QuantConnect.Python import *
import pyrenko
import pandas as pd
import scipy.optimize as opt
from scipy.stats import iqr
import numpy as np

class RenkoStrategy(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2017,1,1)  #Set Start Date
        self.SetEndDate(2020,5,5)  #Set End Date
        self.SetCash(10000)
        
        self.AddCrypto("BTCUSD", Resolution.Daily)
        self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Margin)

        # Create Renko object
        self.renko_obj = pyrenko.renko()
        self.last_brick_size = 0.0 
        
        self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(12, 0), self.LiquidateUnrealizedLosses)
        
    def OnData(self, data):
        if len(self.renko_obj.get_renko_prices()) == 0:
            
            def evaluate_renko(brick, history, column_name):
                self.renko_obj = pyrenko.renko()
                self.renko_obj.set_brick_size(brick_size = brick, auto = False)
                self.renko_obj.build_history(prices = history)
                return self.renko_obj.evaluate()[column_name] 
    
            self.renko_obj = pyrenko.renko()
            
            # I look up history close price in an hourly time frame for the last 15 days
            history = self.History(self.Symbol("BTCUSD"), 360, Resolution.Hour)
            history = pd.Series(history.close)
                
            # Get daily absolute returns
            diffs = history.diff(24).abs()
            diffs = diffs[~np.isnan(diffs)]
            
            # Calculate IQR of daily returns
            iqr_diffs = np.percentile(diffs, [50, 80])
                
            # Find the optimal brick size
            opt_bs = opt.fminbound(lambda x: -evaluate_renko(brick = x,
            history = history, column_name = 'score'),
            iqr_diffs[0], iqr_diffs[1], disp=0)
                
            # Build the model
            #self.Debug(str(self.Time) + " " + 'Rebuilding Renko: ' + str(opt_bs))
            self.last_brick_size = opt_bs
            self.renko_obj.set_brick_size(brick_size = opt_bs, auto = False)
            self.renko_obj.build_history(prices = history)
            
            #Open a position
            self.SetHoldings("BTCUSD", self.renko_obj.get_renko_directions()[-1])
            
        else:
            last_price = self.History(TradeBar, self.Symbol("BTCUSD"), 10, Resolution.Daily)
            last_close = last_price['close'].tail(1)
            last_close = pd.Series(last_close)
            
            prev = self.renko_obj.get_renko_prices()
            prev_dir = self.renko_obj.get_renko_directions()[-1]
            num_created_bars = self.renko_obj.do_next(last_close)
            
            if num_created_bars != 0:
                self.Log('New Renko bars created')
                self.Log('last price: ' + str(last_close[0]))
                #self.Log('previous Renko price: ' + str(prev))
                self.Log('current Renko price: ' + str(self.renko_obj.get_renko_prices()[-1]))
                self.Log('direction: ' + str(prev_dir))
                self.Log('brick size: ' + str(self.renko_obj.brick_size))
            
            if np.sign(self.Portfolio["BTCUSD"].Quantity * self.renko_obj.get_renko_directions()[-1]) == -1:
                self.Liquidate("BTCUSD")
                self.renko_obj = pyrenko.renko()
    
   
    def LiquidateUnrealizedLosses(self):
        # if we overcome certain percentage of unrealized losses, liquidate'''
        if (self.Portfolio.TotalUnrealizedProfit / self.Portfolio.TotalPortfolioValue) > 0.25:
            self.Log("Liquidated due to unrealized losses at: {0}".format(self.Time))
            self.Liquidate()
            self.renko_obj = pyrenko.renko()