Overall Statistics |
Total Orders 5148 Average Win 0.07% Average Loss -0.07% Compounding Annual Return -2.838% Drawdown 20.300% Expectancy -0.074 Start Equity 1000000 End Equity 910632.05 Net Profit -8.937% Sharpe Ratio -0.531 Sortino Ratio -0.525 Probabilistic Sharpe Ratio 0.437% Loss Rate 52% Win Rate 48% Profit-Loss Ratio 0.95 Alpha -0.041 Beta -0.035 Annual Standard Deviation 0.081 Annual Variance 0.007 Information Ratio -0.665 Tracking Error 0.168 Treynor Ratio 1.22 Total Fees $6428.98 Estimated Strategy Capacity $29000000.00 Lowest Capacity Asset NET X7TG3O4R7O11 Portfolio Turnover 5.20% |
# region imports from AlgorithmImports import * from scipy.stats import linregress import numpy as np # endregion class SimpleDynamicMomentumAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 1, 1) # Set start date self.SetEndDate(datetime.now()) # Set end date self.SetCash(1000000) # Set initial capital self.lookback = 90 # Lookback period for momentum calculation (e.g., 3 months) self.rebalance_period = 30 # Rebalance period (e.g., monthly) self.next_rebalance = self.Time + timedelta(days=self.rebalance_period) self.stop_loss_percentage = 0.07 self.entry_prices = {} # Store the entry prices for positions self.highest_prices = {} # Store the highest price reached by a stock for trailing stop loss # Market index to gauge overall market conditions self.market = self.AddEquity("SPY", Resolution.Daily).Symbol # Moving averages for market condition self.short_sma = self.SMA(self.market, 50, Resolution.Daily) self.long_sma = self.SMA(self.market, 200, Resolution.Daily) self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(10, 0), self.Rebalance) self.last_month = -1 def CoarseSelectionFunction(self, coarse): if self.Time.month == self.last_month: return Universe.Unchanged self.last_month = self.Time.month filtered = [x.Symbol for x in coarse if x.HasFundamentalData and x.Price > 10] return filtered def FineSelectionFunction(self, fine): tech_sector_code = 311 # GICS code for the technology sector min_market_cap = 1e10 # Minimum market cap for large-cap stocks min_volume = 1e6 # Minimum average daily volume filtered = [x for x in fine if x.AssetClassification.MorningstarSectorCode == tech_sector_code and x.MarketCap >= min_market_cap and x.Volume > min_volume] sorted_by_market_cap = sorted(filtered, key=lambda x: x.MarketCap, reverse=True)[:500] self.symbols = [x.Symbol for x in sorted_by_market_cap] return self.symbols def OnData(self, data): self.UpdateTrailingStopLoss(data) def UpdateTrailingStopLoss(self, data): for symbol in list(self.entry_prices.keys()): if symbol in data and data[symbol] is not None: current_price = data[symbol].Price # Update the highest price reached if symbol not in self.highest_prices: self.highest_prices[symbol] = current_price else: self.highest_prices[symbol] = max(self.highest_prices[symbol], current_price) # Calculate trailing stop price trailing_stop_price = self.highest_prices[symbol] * (1 - self.stop_loss_percentage) # Check if the current price is below the stop price if current_price < trailing_stop_price: self.Liquidate(symbol) self.Debug(f"Trailing stop-loss triggered for {symbol.Value} at {current_price}") del self.entry_prices[symbol] del self.highest_prices[symbol] # Calculate momentum using annualized exponential regression slope def calculate_momentum(self, history): log_prices = np.log(history['close']) days = np.arange(len(log_prices)) slope, _, _, _, _ = linregress(days, log_prices) annualized_slope = slope * 252 # Assuming 252 trading days in a year return annualized_slope # Calculate historical volatility (annualized standard deviation of daily returns) def calculate_volatility(self, history): daily_returns = history['close'].pct_change().dropna() annualized_volatility = daily_returns.std() * np.sqrt(252) # Assuming 252 trading days in a year return annualized_volatility def Rebalance(self): if self.Time < self.next_rebalance: return if self.short_sma.Current.Value > self.long_sma.Current.Value: long_weight = 0.8 else: long_weight = 0.2 short_weight = 1 - long_weight momentum = {} volatility = {} for symbol in self.symbols: history = self.History(symbol, self.lookback, Resolution.Daily) if not history.empty: momentum[symbol] = self.calculate_momentum(history) volatility[symbol] = self.calculate_volatility(history) sorted_symbols = sorted(momentum.items(), key=lambda x: x[1], reverse=True) num_long = int(len(sorted_symbols) * long_weight) num_short = int(len(sorted_symbols) * short_weight) long_symbols = [symbol for symbol, mom in sorted_symbols[:num_long]] short_symbols = [symbol for symbol, mom in sorted_symbols[-num_short:]] # Calculate inverse volatility weights long_volatility_sum = sum(1/volatility[symbol] for symbol in long_symbols) short_volatility_sum = sum(1/volatility[symbol] for symbol in short_symbols) for symbol in self.symbols: if symbol in long_symbols: weight = (1 / volatility[symbol]) / long_volatility_sum * long_weight self.SetHoldings(symbol, weight) self.entry_prices[symbol] = self.Securities[symbol].Price * (1 - self.stop_loss_percentage) elif symbol in short_symbols: weight = (1 / volatility[symbol]) / short_volatility_sum * short_weight self.SetHoldings(symbol, -weight) self.entry_prices[symbol] = self.Securities[symbol].Price * (1 + self.stop_loss_percentage) else: self.Liquidate(symbol) if symbol in self.entry_prices: del self.entry_prices[symbol] self.next_rebalance = self.Time + timedelta(days=self.rebalance_period) def OnEndOfAlgorithm(self): self.Debug("Algorithm finished running.")