Overall Statistics
Total Trades
8
Average Win
0%
Average Loss
0%
Compounding Annual Return
0%
Drawdown
0%
Expectancy
0
Net Profit
0%
Sharpe Ratio
0
Probabilistic Sharpe Ratio
0%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
0
Tracking Error
0
Treynor Ratio
0
Total Fees
$180.62
Estimated Strategy Capacity
$11.00
class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm):

    def Initialize(self):
        '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''

        self.SetStartDate(2020,1,1)  #Set Start Date
        self.SetEndDate(2021,3,1)    #Set End Date
        self.SetCash(100000)           #Set Strategy Cash

        self.UniverseSettings.Resolution = Resolution.Minute
        self.UniverseSettings.Leverage = 2

        self.coarse_count = 10
        self.averages = { };

        # this add universe method accepts two parameters:
        # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
        self.AddUniverse(self.CoarseSelectionFunction)
        
        self.buys = []
        self.sells = []
        
    def OnData(self, data):
        buys = self.buys.copy()
        for symbol in buys:
            if data.ContainsKey(symbol) and data[symbol] is not None:
                self.SetHoldings(symbol, 0.1)
                self.buys.remove(symbol)
        
        sells = self.sells.copy()
        for symbol in sells:
            if data.ContainsKey(symbol) and data[symbol] is not None:
                self.Liquidate(symbol)
                self.sells.remove(symbol)
        
        self.Quit()


    # sort the data by daily dollar volume and take the top 'NumberOfSymbols'
    def CoarseSelectionFunction(self, coarse):

        # We are going to use a dictionary to refer the object that will keep the moving averages
        for cf in coarse:
            if cf.Symbol not in self.averages:
                self.averages[cf.Symbol] = SymbolData(cf.Symbol, self)

            # Updates the SymbolData object with current EOD price
            avg = self.averages[cf.Symbol]
            avg.update(cf.EndTime, cf.AdjustedPrice)

        # Filter the values of the dict: we only want up-trending securities
        values = list(filter(lambda x: x.is_uptrend, self.averages.values()))

        # Sorts the values of the dict: we want those with greater difference between the moving averages
        values.sort(key=lambda x: x.scale, reverse=True)

        #for x in values[:self.coarse_count]:
        #    self.Log('symbol: ' + str(x.symbol.Value) + '  scale: ' + str(x.scale))

        # we need to return only the symbol objects
        return [ x.symbol for x in values[:self.coarse_count] ]

    # this event fires whenever we have changes to our universe
    def OnSecuritiesChanged(self, changes):
        for security in changes.RemovedSecurities:
            self.sells.append(security.Symbol)
    
        for security in changes.AddedSecurities:
            self.buys.append(security.Symbol)
        
                
        


class SymbolData(object):
    def __init__(self, symbol, algorithm):
        self.symbol = symbol
        self.tolerance = 1.01
        self.fast = ExponentialMovingAverage(5)
        self.slow = ExponentialMovingAverage(10)
        self.is_uptrend = False
        self.scale = 0
        
        
        ## Warm up EMAs
        history = algorithm.History(symbol, self.slow.WarmUpPeriod, Resolution.Daily)
        if history.empty or 'close' not in history.columns:
            return
        closes = history.loc[symbol].close
        for time, close in closes.iteritems():
            self.fast.Update(time, close)
            self.slow.Update(time, close)

    def update(self, time, value):
        if self.fast.Update(time, value) and self.slow.Update(time, value):
            fast = self.fast.Current.Value
            slow = self.slow.Current.Value
            self.is_uptrend = fast > slow * self.tolerance

        if self.is_uptrend:
            self.scale = (fast - slow) / ((fast + slow) / 2.0)