Overall Statistics |
Total Trades 8 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $180.62 Estimated Strategy Capacity $11.00 |
class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2020,1,1) #Set Start Date self.SetEndDate(2021,3,1) #Set End Date self.SetCash(100000) #Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Minute self.UniverseSettings.Leverage = 2 self.coarse_count = 10 self.averages = { }; # this add universe method accepts two parameters: # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction) self.buys = [] self.sells = [] def OnData(self, data): buys = self.buys.copy() for symbol in buys: if data.ContainsKey(symbol) and data[symbol] is not None: self.SetHoldings(symbol, 0.1) self.buys.remove(symbol) sells = self.sells.copy() for symbol in sells: if data.ContainsKey(symbol) and data[symbol] is not None: self.Liquidate(symbol) self.sells.remove(symbol) self.Quit() # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # We are going to use a dictionary to refer the object that will keep the moving averages for cf in coarse: if cf.Symbol not in self.averages: self.averages[cf.Symbol] = SymbolData(cf.Symbol, self) # Updates the SymbolData object with current EOD price avg = self.averages[cf.Symbol] avg.update(cf.EndTime, cf.AdjustedPrice) # Filter the values of the dict: we only want up-trending securities values = list(filter(lambda x: x.is_uptrend, self.averages.values())) # Sorts the values of the dict: we want those with greater difference between the moving averages values.sort(key=lambda x: x.scale, reverse=True) #for x in values[:self.coarse_count]: # self.Log('symbol: ' + str(x.symbol.Value) + ' scale: ' + str(x.scale)) # we need to return only the symbol objects return [ x.symbol for x in values[:self.coarse_count] ] # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): for security in changes.RemovedSecurities: self.sells.append(security.Symbol) for security in changes.AddedSecurities: self.buys.append(security.Symbol) class SymbolData(object): def __init__(self, symbol, algorithm): self.symbol = symbol self.tolerance = 1.01 self.fast = ExponentialMovingAverage(5) self.slow = ExponentialMovingAverage(10) self.is_uptrend = False self.scale = 0 ## Warm up EMAs history = algorithm.History(symbol, self.slow.WarmUpPeriod, Resolution.Daily) if history.empty or 'close' not in history.columns: return closes = history.loc[symbol].close for time, close in closes.iteritems(): self.fast.Update(time, close) self.slow.Update(time, close) def update(self, time, value): if self.fast.Update(time, value) and self.slow.Update(time, value): fast = self.fast.Current.Value slow = self.slow.Current.Value self.is_uptrend = fast > slow * self.tolerance if self.is_uptrend: self.scale = (fast - slow) / ((fast + slow) / 2.0)