Overall Statistics |
Total Trades 690 Average Win 1.70% Average Loss -1.22% Compounding Annual Return 310.289% Drawdown 24.000% Expectancy 0.502 Net Profit 620.603% Sharpe Ratio 4.758 Probabilistic Sharpe Ratio 99.670% Loss Rate 37% Win Rate 63% Profit-Loss Ratio 1.39 Alpha 1.859 Beta 0.073 Annual Standard Deviation 0.39 Annual Variance 0.152 Information Ratio 4.444 Tracking Error 0.425 Treynor Ratio 25.271 Total Fees $16138.85 Estimated Strategy Capacity $730000.00 Lowest Capacity Asset TMV UBTUG7D0B7TX Portfolio Turnover 46.38% |
from AlgorithmImports import * import math import pandas as pd from cmath import sqrt from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Data.Custom import * from QuantConnect.Python import PythonData class IntelligentSkyDoge(QCAlgorithm): def Initialize(self): self.cash = 100000 self.buffer_pct = 0.03 # CHANGE YOUR THRESHOLD HERE self.SetStartDate(2022, 1, 1) self.SetEndDate(2023, 5, 28) self.SetCash(self.cash) self.equities = ['SPY', 'QQQ', 'UVXY', 'SQQQ', 'SPXS', 'TECL', 'STIP', 'TQQQ', 'SHY', 'UPRO', 'QLD', 'UDN', 'TMV', 'SOXL', 'SHV', 'TLT', 'UUP', 'UGL', 'BIL', 'VCIT', 'VIXY', 'IEF', 'SVXY', 'EDV', 'QQQE', 'VTV', 'VOX', 'VOOG', 'VOOV', 'XLP', 'XLY', 'FAS', 'BIL', 'VCIT', 'VIXM', 'TMF'] self.MKT = self.AddEquity("SPY", Resolution.Daily).Symbol self.mkt = [] for equity in self.equities: self.AddEquity(equity, Resolution.Minute) self.Securities[equity].SetDataNormalizationMode(DataNormalizationMode.Adjusted) self.PT1 = 0.72 self.PT2 = 0.0 self.PT3 = 0.22 self.HT40 = {str(i).zfill(2): 0 for i in range(1, 21)} self.HTS40 = {str(i).zfill(2): [] for i in range(1, 21)} self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 2), self.FunctionBeforeMarketClose) def RSI(self, equity, period): extension = min(period*5, 250) r_w = RollingWindow[float](extension) history = self.History(equity, extension - 1, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < extension: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: average_gain = 0 average_loss = 0 gain = 0 loss = 0 for i in range(extension - 1, extension - period -1, -1): gain += max(r_w[i-1] - r_w[i], 0) loss += abs(min(r_w[i-1] - r_w[i], 0)) average_gain = gain/period average_loss = loss/period for i in range(extension - period - 1, 0, -1): average_gain = (average_gain*(period-1) + max(r_w[i-1] - r_w[i], 0))/period average_loss = (average_loss*(period-1) + abs(min(r_w[i-1] - r_w[i], 0)))/period if average_loss == 0: return 100 else: rsi = 100 - (100/(1 + average_gain / average_loss)) return rsi else: return None def CumReturn(self, equity, period): history = self.History(equity, period, Resolution.Daily) closing_prices = pd.Series([bar.Close for bar in history]) current_price = self.Securities[equity].Price closing_prices = closing_prices.append(pd.Series([current_price])) first_price = closing_prices.iloc[0] if first_price == 0: return None else: return_val = (current_price / first_price) - 1 return return_val def STD(self, equity, period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity, period, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period, 0, -1): daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) dfstd = pd.DataFrame({'r_w_return':r_w_return}) if r_w.IsReady: std = dfstd['r_w_return'].std() if std == 0: return 0 else: return std else: return 0 def MaxDD(self, equity, period): history = self.History(equity, period - 1, Resolution.Daily) closing_prices = pd.Series([bar.Close for bar in history]) current_price = self.Securities[equity].Price closing_prices = closing_prices.append(pd.Series([current_price])) rolling_max = closing_prices.cummax() drawdowns = (rolling_max - closing_prices) / rolling_max max_dd = drawdowns.min() return max_dd def SMA(self, equity, period): r_w = RollingWindow[float](period) history = self.History(equity, period - 1, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: sma = sum(r_w) / period return sma else: return 0 def IV(self, equity, period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity, period, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period, 0, -1): if r_w[i] == 0: return 0 else: daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) dfinverse = pd.DataFrame({'r_w_return':r_w_return}) if r_w.IsReady: std = dfinverse['r_w_return'].std() if std == 0: return 0 else: inv_vol = 1 / std return inv_vol else: return 0 def SMADayRet(self, equity, period): r_w = RollingWindow[float](period + 1) r_w_return = RollingWindow[float](period) history = self.History(equity, period, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < period + 1: current_price = self.Securities[equity].Price r_w.Add(current_price) for i in range (period, 0, -1): if r_w[i] == 0: return None daily_return = (r_w[i-1]/r_w[i] - 1) r_w_return.Add(daily_return) if r_w.IsReady: smareturn = sum(r_w_return) / period return smareturn else: return 0 def EMA(self, equity, period): extension = period + 50 r_w = RollingWindow[float](extension) history = self.History(equity, extension - 1, Resolution.Daily) for historical_bar in history: r_w.Add(historical_bar.Close) while r_w.Count < extension: current_price = self.Securities[equity].Price r_w.Add(current_price) if r_w.IsReady: total_price = 0 for i in range(extension - 1, extension - period - 2, -1): total_price += r_w[i] average_price = total_price/period for i in range(extension - period - 2, -1, -1): average_price = r_w[i]*2/(period+1) + average_price*(1-2/(period+1)) return average_price else: return None def Sort(self, sort_type, equities, period, reverse, number, multiplier): self.PT = getattr(self, f"PT{number}") * multiplier returns = {} for equity in equities: returns[equity] = getattr(self, sort_type)(equity, period) s_e = sorted([item for item in returns.items() if item[1] is not None], key = lambda x: x[1], reverse = reverse) t3e = s_e[:1] for i in self.HT40.keys(): if self.HT40[i] == 0: self.HT40[i] = self.PT self.HTS40[i].append(t3e[0][0]) break def AppendHolding(self, equity, PTnumber, HTnumber, multiplier): HT = getattr(self, f"HT{HTnumber}") HTS = getattr(self, f"HTS{HTnumber}") PT = getattr(self, f"PT{PTnumber}") * multiplier for i in HT.keys(): if HT[i] == 0: HT[i] = PT HTS[i].append(equity) break def OnData (self, data): pass def FunctionBeforeMarketClose(self): mkt_price = self.History(self.MKT, 2, Resolution.Daily)['close'].unstack(level= 0).iloc[-1] self.mkt.append(mkt_price) mkt_perf = self.cash * self.mkt[-1] / self.mkt[0] self.Plot('Strategy Equity', self.MKT, mkt_perf) self.HolyGrailSimplified() #self.V15A() self.v41Pops() self.ExecuteTrade() def HolyGrailSimplified(self): if self.Securities['SPY'].Price > self.SMA('SPY', 200): if self.RSI('QQQ', 10) > 79: self.Sort("RSI", ["UVXY", "SQQQ"], 13, True, 1, 1) elif self.RSI('SPY', 10) > 79: self.Sort("RSI", ["UVXY", "SPXS"], 13, True, 1, 1) else: self.Sort("RSI", ["TECL", "STIP"], 11, False, 1, 1) elif self.RSI('TQQQ', 10) < 31: self.Sort("RSI", ["TECL", "SHY"], 11, False, 1, 1) elif self.RSI('UPRO', 10) < 31: self.Sort("RSI", ["UPRO", "SHY"], 11, False, 1, 1) elif self.CumReturn('TQQQ', 6) < -0.11: self.BuythedipsV2() else: if self.Securities['QLD'].Price > self.SMA('QLD', 20): self.Sort("RSI", ["TECL", "STIP"], 11, False, 1, 1) else: self.Substrategy5() self.Substrategy6() def BuythedipsV2(self): if self.CumReturn('TQQQ', 1) > 0.055: self.Sort("RSI", ["UVXY", "SQQQ"], 11, True, 1, 1) elif self.CumReturn('SQQQ', 1) > 0.028: self.Substrategy1() self.Substrategy2() else: self.HoldStocksBondsSOXLSHVTECLSTIP() def Substrategy1(self): self.Sort("RSI", ["TECL", "UDN"], 11, False, 1, 0.5) def Substrategy2(self): self.Sort("RSI", ["TECL", "TMV"], 11, True, 1, 0.5) def HoldStocksBondsSOXLSHVTECLSTIP(self): self.Substrategy3() self.Substrategy4() def Substrategy3(self): self.Sort("RSI", ["SOXL", "SHV"], 11, False, 1, 0.68) def Substrategy4(self): self.Sort("RSI", ["TECL", "STIP"], 11, False, 1, 0.32) def Substrategy5(self): if self.SMADayRet('TLT', 20) > self.SMADayRet('UDN', 20): self.Sort("RSI", ["TLT", "SQQQ"], 11, True, 1, 0.5) else: self.Sort("RSI", ["UUP", "SQQQ"], 10, False, 1, 0.5) def Substrategy6(self): self.Sort("RSI", ["UGL", "SQQQ"], 12, False, 1, 0.5) def V15A(self): if self.RSI('SPY', 6) > 75: self.Sort("RSI", ["UVXY", "VIXY"], 5, False, 2, 1) else: if self.RSI('BIL', 5) < self.RSI('VCIT', 4): self.AppendHolding('SOXL', 2, 40, 1) else: if self.SMADayRet('VIXY', 5) > self.SMADayRet('BND', 5): self.Sort("MaxDD", ["UVXY", "VIXY", "IEF"], 3, True, 2, 1) else: if self.SMADayRet('EDV', 11) > 0: self.Sort("RSI", ["SVXY", "TMF"], 21, False, 2, 1) else: self.Sort("RSI", ["SVXY", "TMV"], 21, False, 2, 1) def v41Pops(self): if self.RSI('QQQE', 10) > 79: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('VTV', 10) > 79: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('VOX', 10) > 79: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.MaxDD('SPY', 9) < 0: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('TECL', 10) > 79: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('VOOG', 10) > 79: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('VOOV', 10) > 79: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('XLP', 10) > 75: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('TQQQ', 10) > 79: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('XLY', 10) > 80: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('FAS', 10) > 80: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.RSI('SPY', 10) > 80: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) elif self.CumReturn('TQQQ', 6) < -0.12: if self.CumReturn('QQQ', 1) > 0.018: self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1) else: self.V15B() else: self.V15B() def V15B(self): if self.RSI('SPY', 6) > 75: self.Sort("RSI", ["UVXY", "VIXY"], 13, True, 3, 1) else: if self.RSI('BIL', 5) < self.RSI('VCIT', 5): self.AppendHolding('SOXL', 3, 40, 1) else: if self.RSI('SVXY', 11) > 60: self.Sort("RSI", ["TMF", "BIL"], 10, True, 3, 1) else: if self.SMADayRet('VIXM', 10) > self.SMADayRet('SVXY', 5): self.Sort("MaxDD", ["UVXY", "VIXY", "IEF"], 3, False, 3, 1) else: if self.SMADayRet('EDV', 11) > 0: self.Sort("RSI", ["SVXY", "TMF"], 21, True, 3, 1) else: self.Sort("RSI", ["SVXY", "TMV"], 21, True, 3, 1) def ExecuteTrade(self): group = { 'HTS': [self.HTS40[i][0] if len(self.HTS40[i]) == 1 else self.HTS40[i] for i in self.HTS40], 'HT': [self.HT40[i] for i in self.HT40] } df = pd.DataFrame(group) df = pd.concat([df]) df['HTS'] = df['HTS'].astype(str) result = df.groupby(['HTS']).sum().reset_index() for equity in self.equities: if all(not pd.isnull(result.iloc[i, 0]) and not equity == result.iloc[i, 0] for i in range(len(result))): if self.Portfolio[equity].HoldStock: self.Liquidate(equity) output = "*****" for i in range(len(result)): if result.iloc[i, 0]: percentage = round(result.iloc[i, 1] * 100, 2) output += "{}: {}% - ".format(result.iloc[i, 0], percentage) output = output.rstrip(" - ") self.Log(output) for i in range(len(result)): if not result.iloc[i, 1] == 0 and not result.iloc[i, 0] == 'BIL': percentage_equity = self.Portfolio[result.iloc[i, 0]].HoldingsValue / self.Portfolio.TotalPortfolioValue quantity = (result.iloc[i, 1] - percentage_equity) * self.Portfolio.TotalPortfolioValue / self.Securities[result.iloc[i, 0]].Price if result.iloc[i, 1] < percentage_equity and abs(result.iloc[i, 1] / percentage_equity - 1) > self.buffer_pct: self.SetHoldings(result.iloc[i, 0], result.iloc[i, 1]) #self.MarketOnCloseOrder(result.iloc[i, 0], quantity) else: pass for i in range(len(result)): if not result.iloc[i, 1] == 0 and not result.iloc[i, 0] == 'BIL': percentage_equity = self.Portfolio[result.iloc[i, 0]].HoldingsValue / self.Portfolio.TotalPortfolioValue quantity = (result.iloc[i, 1] - percentage_equity) * self.Portfolio.TotalPortfolioValue / self.Securities[result.iloc[i, 0]].Price if result.iloc[i, 1] > percentage_equity and abs(percentage_equity / result.iloc[i, 1] - 1) > self.buffer_pct: self.SetHoldings(result.iloc[i, 0], result.iloc[i, 1]) #self.MarketOnCloseOrder(result.iloc[i, 0], quantity) else: pass self.HT40 = {str(i).zfill(2): 0 for i in range(1, 21)} self.HTS40 = {str(i).zfill(2): [] for i in range(1, 21)}