Overall Statistics
Total Trades
690
Average Win
1.70%
Average Loss
-1.22%
Compounding Annual Return
310.289%
Drawdown
24.000%
Expectancy
0.502
Net Profit
620.603%
Sharpe Ratio
4.758
Probabilistic Sharpe Ratio
99.670%
Loss Rate
37%
Win Rate
63%
Profit-Loss Ratio
1.39
Alpha
1.859
Beta
0.073
Annual Standard Deviation
0.39
Annual Variance
0.152
Information Ratio
4.444
Tracking Error
0.425
Treynor Ratio
25.271
Total Fees
$16138.85
Estimated Strategy Capacity
$730000.00
Lowest Capacity Asset
TMV UBTUG7D0B7TX
Portfolio Turnover
46.38%
from AlgorithmImports import *
import math
import pandas as pd
from cmath import sqrt
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")

from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data.Custom import *
from QuantConnect.Python import PythonData


class IntelligentSkyDoge(QCAlgorithm):
   
    def Initialize(self):

        self.cash = 100000
        self.buffer_pct = 0.03 # CHANGE YOUR THRESHOLD HERE
        self.SetStartDate(2022, 1, 1)
        self.SetEndDate(2023, 5, 28)
        self.SetCash(self.cash)
        self.equities = ['SPY', 'QQQ', 'UVXY', 'SQQQ', 'SPXS', 'TECL', 'STIP', 'TQQQ', 'SHY', 'UPRO', 'QLD', 'UDN', 'TMV', 'SOXL', 'SHV', 'TLT', 'UUP', 'UGL', 'BIL', 'VCIT', 'VIXY', 'IEF', 'SVXY', 'EDV', 'QQQE', 'VTV', 'VOX', 'VOOG', 'VOOV', 'XLP', 'XLY', 'FAS', 'BIL', 'VCIT', 'VIXM', 'TMF']
        self.MKT = self.AddEquity("SPY", Resolution.Daily).Symbol
        self.mkt = []
        for equity in self.equities:
            self.AddEquity(equity, Resolution.Minute)
            self.Securities[equity].SetDataNormalizationMode(DataNormalizationMode.Adjusted)
        
        self.PT1 = 0.72
        self.PT2 = 0.0
        self.PT3 = 0.22

        self.HT40 = {str(i).zfill(2): 0 for i in range(1, 21)}
        self.HTS40 = {str(i).zfill(2): [] for i in range(1, 21)}

        self.Schedule.On(self.DateRules.EveryDay("SPY"),
                self.TimeRules.BeforeMarketClose("SPY", 2),
                self.FunctionBeforeMarketClose)

    def RSI(self, equity, period):
        extension = min(period*5, 250)
        r_w = RollingWindow[float](extension)
        history = self.History(equity, extension - 1, Resolution.Daily)
        for historical_bar in history:
            r_w.Add(historical_bar.Close)
        while r_w.Count < extension:
            current_price = self.Securities[equity].Price
            r_w.Add(current_price)
        if r_w.IsReady:
            average_gain = 0
            average_loss = 0
            gain = 0
            loss = 0
            for i in range(extension - 1, extension - period -1, -1):
                gain += max(r_w[i-1] - r_w[i], 0)
                loss += abs(min(r_w[i-1] - r_w[i], 0))
            average_gain = gain/period
            average_loss = loss/period
            for i in range(extension - period - 1, 0, -1):
                average_gain = (average_gain*(period-1) + max(r_w[i-1] - r_w[i], 0))/period
                average_loss = (average_loss*(period-1) + abs(min(r_w[i-1] - r_w[i], 0)))/period
            if average_loss == 0:
                return 100
            else:
                rsi = 100 - (100/(1 + average_gain / average_loss))
                return rsi
        else:
            return None

    def CumReturn(self, equity, period):
        history = self.History(equity, period, Resolution.Daily)
        closing_prices = pd.Series([bar.Close for bar in history])
        current_price = self.Securities[equity].Price
        closing_prices = closing_prices.append(pd.Series([current_price]))
        first_price = closing_prices.iloc[0]
        if first_price == 0:
            return None
        else:
            return_val = (current_price / first_price) - 1
            return return_val


    def STD(self, equity, period):
        r_w = RollingWindow[float](period + 1)
        r_w_return = RollingWindow[float](period)
        history = self.History(equity, period, Resolution.Daily)
        for historical_bar in history:
            r_w.Add(historical_bar.Close)
        while r_w.Count < period + 1:
            current_price = self.Securities[equity].Price
            r_w.Add(current_price)
        for i in range (period, 0, -1):
            daily_return = (r_w[i-1]/r_w[i] - 1)
            r_w_return.Add(daily_return)
        dfstd = pd.DataFrame({'r_w_return':r_w_return})       
        if r_w.IsReady:
            std = dfstd['r_w_return'].std()
            if std == 0:
                return 0
            else:
                return std
        else:
            return 0

    def MaxDD(self, equity, period):

        history = self.History(equity, period - 1, Resolution.Daily)     
        closing_prices = pd.Series([bar.Close for bar in history])
        current_price = self.Securities[equity].Price
        closing_prices = closing_prices.append(pd.Series([current_price]))
        rolling_max = closing_prices.cummax()
        drawdowns = (rolling_max - closing_prices) / rolling_max
        max_dd = drawdowns.min()
        return max_dd


    def SMA(self, equity, period):
        r_w = RollingWindow[float](period)
        history = self.History(equity, period - 1, Resolution.Daily)
        for historical_bar in history:
            r_w.Add(historical_bar.Close)
        while r_w.Count < period:
            current_price = self.Securities[equity].Price
            r_w.Add(current_price)        
        if r_w.IsReady:
            sma = sum(r_w) / period
            return sma
        else:
            return 0
           
    def IV(self, equity, period):
        r_w = RollingWindow[float](period + 1)
        r_w_return = RollingWindow[float](period)
        history = self.History(equity, period, Resolution.Daily)
        for historical_bar in history:
            r_w.Add(historical_bar.Close)
        while r_w.Count < period + 1:
            current_price = self.Securities[equity].Price
            r_w.Add(current_price)
        for i in range (period, 0, -1):
            if r_w[i] == 0:
                return 0
            else:
                daily_return = (r_w[i-1]/r_w[i] - 1)
                r_w_return.Add(daily_return)
        dfinverse = pd.DataFrame({'r_w_return':r_w_return})       
        if r_w.IsReady:
            std = dfinverse['r_w_return'].std()
            if std == 0:
                return 0
            else:
                inv_vol = 1 / std
                return inv_vol
        else:
            return 0

    def SMADayRet(self, equity, period):
        r_w = RollingWindow[float](period + 1)
        r_w_return = RollingWindow[float](period)
        history = self.History(equity, period, Resolution.Daily)
        for historical_bar in history:
            r_w.Add(historical_bar.Close)
        while r_w.Count < period + 1:
            current_price = self.Securities[equity].Price
            r_w.Add(current_price)
        for i in range (period, 0, -1):
            if r_w[i] == 0:
                return None
            daily_return = (r_w[i-1]/r_w[i] - 1)
            r_w_return.Add(daily_return)
        if r_w.IsReady:
            smareturn = sum(r_w_return) / period
            return smareturn
        else:
            return 0

    def EMA(self, equity, period):
        extension = period + 50
        r_w = RollingWindow[float](extension)
        history = self.History(equity, extension - 1, Resolution.Daily)
        for historical_bar in history:
            r_w.Add(historical_bar.Close)
        while r_w.Count < extension:
            current_price = self.Securities[equity].Price
            r_w.Add(current_price)
        if r_w.IsReady:
            total_price = 0
            for i in range(extension - 1, extension - period - 2, -1):
                total_price += r_w[i]
            average_price = total_price/period
            for i in range(extension - period - 2, -1, -1):
                average_price = r_w[i]*2/(period+1) + average_price*(1-2/(period+1))

            return average_price
        else:
            return None

    def Sort(self, sort_type, equities, period, reverse, number, multiplier):
        self.PT = getattr(self, f"PT{number}") * multiplier
        returns = {}
        for equity in equities:
            returns[equity] = getattr(self, sort_type)(equity, period)
        s_e = sorted([item for item in returns.items() if item[1] is not None], key = lambda x: x[1], reverse = reverse)
        t3e = s_e[:1]
        for i in self.HT40.keys():
            if self.HT40[i] == 0:
                self.HT40[i] = self.PT
                self.HTS40[i].append(t3e[0][0])
                break

    def AppendHolding(self, equity, PTnumber, HTnumber, multiplier):
        HT = getattr(self, f"HT{HTnumber}")
        HTS = getattr(self, f"HTS{HTnumber}")
        PT = getattr(self, f"PT{PTnumber}") * multiplier
        for i in HT.keys():
            if HT[i] == 0:
                HT[i] = PT
                HTS[i].append(equity)
                break

    def OnData (self, data):
        pass
   
    def FunctionBeforeMarketClose(self):

        mkt_price = self.History(self.MKT, 2, Resolution.Daily)['close'].unstack(level= 0).iloc[-1]
        self.mkt.append(mkt_price)
        mkt_perf = self.cash * self.mkt[-1] / self.mkt[0]
        self.Plot('Strategy Equity', self.MKT, mkt_perf)

        self.HolyGrailSimplified()
        #self.V15A()
        self.v41Pops()
        self.ExecuteTrade()

    def HolyGrailSimplified(self):
        if self.Securities['SPY'].Price > self.SMA('SPY', 200):
            if self.RSI('QQQ', 10) > 79:
                self.Sort("RSI", ["UVXY", "SQQQ"], 13, True, 1, 1)
            elif self.RSI('SPY', 10) > 79:
                self.Sort("RSI", ["UVXY", "SPXS"], 13, True, 1, 1)
            else:
                self.Sort("RSI", ["TECL", "STIP"], 11, False, 1, 1)
        elif self.RSI('TQQQ', 10) < 31:
            self.Sort("RSI", ["TECL", "SHY"], 11, False, 1, 1)
        elif self.RSI('UPRO', 10) < 31:
            self.Sort("RSI", ["UPRO", "SHY"], 11, False, 1, 1)
        elif self.CumReturn('TQQQ', 6) < -0.11:
            self.BuythedipsV2()
        else:
            if self.Securities['QLD'].Price > self.SMA('QLD', 20):
                self.Sort("RSI", ["TECL", "STIP"], 11, False, 1, 1)
            else:
                self.Substrategy5()
                self.Substrategy6()

    def BuythedipsV2(self):

        if self.CumReturn('TQQQ', 1) > 0.055:
            self.Sort("RSI", ["UVXY", "SQQQ"], 11, True, 1, 1)
        elif self.CumReturn('SQQQ', 1) > 0.028:
            self.Substrategy1()
            self.Substrategy2()
        else:
            self.HoldStocksBondsSOXLSHVTECLSTIP()

    def Substrategy1(self):
        self.Sort("RSI", ["TECL", "UDN"], 11, False, 1, 0.5)

    def Substrategy2(self):
        self.Sort("RSI", ["TECL", "TMV"], 11, True, 1, 0.5)

    def HoldStocksBondsSOXLSHVTECLSTIP(self):
            self.Substrategy3()
            self.Substrategy4()
        
    def Substrategy3(self):
        self.Sort("RSI", ["SOXL", "SHV"], 11, False, 1, 0.68)

    def Substrategy4(self):
        self.Sort("RSI", ["TECL", "STIP"], 11, False, 1, 0.32)

    def Substrategy5(self):
        if self.SMADayRet('TLT', 20) > self.SMADayRet('UDN', 20):
            self.Sort("RSI", ["TLT", "SQQQ"], 11, True, 1, 0.5)
        else:
            self.Sort("RSI", ["UUP", "SQQQ"], 10, False, 1, 0.5)

    def Substrategy6(self):
        self.Sort("RSI", ["UGL", "SQQQ"], 12, False, 1, 0.5)

    def V15A(self):
        if self.RSI('SPY', 6) > 75:
            self.Sort("RSI", ["UVXY", "VIXY"], 5, False, 2, 1)
        else:
            if self.RSI('BIL', 5) < self.RSI('VCIT', 4):
                self.AppendHolding('SOXL', 2, 40, 1)
            else:
                if self.SMADayRet('VIXY', 5) > self.SMADayRet('BND', 5):
                    self.Sort("MaxDD", ["UVXY", "VIXY", "IEF"], 3, True, 2, 1)
                else:
                    if self.SMADayRet('EDV', 11) > 0:
                        self.Sort("RSI", ["SVXY", "TMF"], 21, False, 2, 1)
                    else:
                        self.Sort("RSI", ["SVXY", "TMV"], 21, False, 2, 1)

    def v41Pops(self):
        if self.RSI('QQQE', 10) > 79:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('VTV', 10) > 79:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('VOX', 10) > 79:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.MaxDD('SPY', 9) < 0:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('TECL', 10) > 79:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('VOOG', 10) > 79:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('VOOV', 10) > 79:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('XLP', 10) > 75:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('TQQQ', 10) > 79:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('XLY', 10) > 80:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('FAS', 10) > 80:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.RSI('SPY', 10) > 80:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
        elif self.CumReturn('TQQQ', 6) < -0.12:
            if self.CumReturn('QQQ', 1) > 0.018:
                self.Sort("RSI", ["UVXY", "VIXY"], 13, False, 3, 1)
            else:
                self.V15B()
        else:
            self.V15B()

    def V15B(self):

        if self.RSI('SPY', 6) > 75:
            self.Sort("RSI", ["UVXY", "VIXY"], 13, True, 3, 1)
        else:
            if self.RSI('BIL', 5) < self.RSI('VCIT', 5):
                self.AppendHolding('SOXL', 3, 40, 1)
            else:
                if self.RSI('SVXY', 11) > 60:
                    self.Sort("RSI", ["TMF", "BIL"], 10, True, 3, 1)
                else:
                    if self.SMADayRet('VIXM', 10) > self.SMADayRet('SVXY', 5):
                        self.Sort("MaxDD", ["UVXY", "VIXY", "IEF"], 3, False, 3, 1)
                    else:
                        if self.SMADayRet('EDV', 11) > 0:
                            self.Sort("RSI", ["SVXY", "TMF"], 21, True, 3, 1)
                        else:
                            self.Sort("RSI", ["SVXY", "TMV"], 21, True, 3, 1)

    def ExecuteTrade(self):
        group = {
            'HTS': [self.HTS40[i][0] if len(self.HTS40[i]) == 1 else self.HTS40[i] for i in self.HTS40],
            'HT': [self.HT40[i] for i in self.HT40]
        }
        df = pd.DataFrame(group)
        df = pd.concat([df])
        df['HTS'] = df['HTS'].astype(str)
        result = df.groupby(['HTS']).sum().reset_index()

        for equity in self.equities:
            if all(not pd.isnull(result.iloc[i, 0]) and not equity == result.iloc[i, 0] for i in range(len(result))):
                if self.Portfolio[equity].HoldStock:
                    self.Liquidate(equity)
        output = "*****"

        for i in range(len(result)):
            if result.iloc[i, 0]:
                percentage = round(result.iloc[i, 1] * 100, 2)
                output += "{}: {}% - ".format(result.iloc[i, 0], percentage)
        output = output.rstrip(" - ")
        self.Log(output)

        for i in range(len(result)):
            if not result.iloc[i, 1] == 0 and not result.iloc[i, 0] == 'BIL':
                percentage_equity = self.Portfolio[result.iloc[i, 0]].HoldingsValue / self.Portfolio.TotalPortfolioValue
                quantity = (result.iloc[i, 1] - percentage_equity) * self.Portfolio.TotalPortfolioValue / self.Securities[result.iloc[i, 0]].Price
                if result.iloc[i, 1] < percentage_equity and abs(result.iloc[i, 1] / percentage_equity - 1) > self.buffer_pct:
                    self.SetHoldings(result.iloc[i, 0], result.iloc[i, 1])
                    #self.MarketOnCloseOrder(result.iloc[i, 0], quantity)
                else:
                    pass

        for i in range(len(result)):
            if not result.iloc[i, 1] == 0 and not result.iloc[i, 0] == 'BIL':
                percentage_equity = self.Portfolio[result.iloc[i, 0]].HoldingsValue / self.Portfolio.TotalPortfolioValue
                quantity = (result.iloc[i, 1] - percentage_equity) * self.Portfolio.TotalPortfolioValue / self.Securities[result.iloc[i, 0]].Price
                if result.iloc[i, 1] > percentage_equity and abs(percentage_equity / result.iloc[i, 1] - 1) > self.buffer_pct:
                    self.SetHoldings(result.iloc[i, 0], result.iloc[i, 1])
                    #self.MarketOnCloseOrder(result.iloc[i, 0], quantity)
                else:
                    pass
    
        self.HT40 = {str(i).zfill(2): 0 for i in range(1, 21)}
        self.HTS40 = {str(i).zfill(2): [] for i in range(1, 21)}