Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 11.838% Drawdown 8.000% Expectancy 0 Net Profit 0.574% Sharpe Ratio 0.474 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 4.24 Beta -230.391 Annual Standard Deviation 0.322 Annual Variance 0.104 Information Ratio 0.418 Tracking Error 0.322 Treynor Ratio -0.001 Total Fees $3.80 |
from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Data.Market import TradeBar ### <summary> ### Using rolling windows for efficient storage of historical data; which automatically clears after a period of time. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="history and warm up" /> ### <meta name="tag" content="history" /> ### <meta name="tag" content="warm up" /> ### <meta name="tag" content="indicators" /> ### <meta name="tag" content="rolling windows" /> class RollingWindowAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2018,1,1) #Set Start Date self.SetEndDate(2018,1,20) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.AddEquity("SVXY", Resolution.Minute) # Creates a Rolling Window indicator to keep the 2 TradeBar self.window = RollingWindow[TradeBar](2) # For other security types, use QuoteBar # Creates an indicator and adds to a rolling window when it is updated self.SMA("SVXY", 225).Updated += self.SmaUpdated self.smaWin = RollingWindow[IndicatorDataPoint](225) def SmaUpdated(self, sender, updated): '''Adds updated values to rolling window''' self.smaWin.Add(updated) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' # Add SVXY TradeBar in rollling window self.window.Add(data["SVXY"]) # Wait for windows to be ready. if not (self.window.IsReady and self.smaWin.IsReady): return currSma = self.smaWin[0] # Current SMA had index zero. pastSma = self.smaWin[1] # Oldest SMA has index of window count minus 1. self.Log("pSMA:{0} -> {1} ... cSMA {2}".format(pastSma.Time, pastSma.Value, currSma.Value)) if not self.Portfolio.Invested and currSma.Value > pastSma.Value: self.SetHoldings("SVXY", 1)