Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from QuantConnect.Indicators import * class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2018,1,1) #Set Start Date self.SetEndDate(2018,1,15) #Set End Date self.SetCash(10000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.AddEquity("SPY", Resolution.Daily) self.midprice = self.MIDPRICE('SPY',1,Resolution.Daily) self.vwap = self.VWAP('SPY',2,Resolution.Daily) self.SetWarmUp(20) self.SetBenchmark("SPY") def OnData(self, data): if self.IsWarmingUp: return VWAP = self.midprice.Current.Value Mid = self.vwap.Current.Value current = data["SPY"].Close #need to check when to go long if not self.Portfolio.Invested: if current == Mid and current > VWAP: self.SetHoldings("SPY", 1) if current == Mid and current < VWAP: self.SetHoldings("SPY", -1) if self.Portfolio.Invested: if self.Portfolio["SPY"].IsLong: if current < Mid and current < VWAP: self.Liquidate("SPY") if self.Portfolio["SPY"].IsShort: if current > Mid and current > VWAP: self.Liquidate("SPY")