Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 1.735 Tracking Error 0.241 Treynor Ratio 0 Total Fees $0.00 |
from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Data import * from QuantConnect.Data.Market import * from QuantConnect.Data.Consolidators import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Securities import * from QuantConnect.Orders import * from datetime import datetime from System.Drawing import Color import decimal as d import numpy as np class Demo(QCAlgorithm): def Initialize(self): # configuration parameters (configurable inputs into the algorithm) DEBUG_LOG = str(self.GetParameter("Debug Log")).lower() == "true" or False MINUTES_AFTER_OPEN = int(self.GetParameter("MarketOpenDelay")) or 0 MINUTES_BEFORE_CLOSE = int(self.GetParameter("SellMinutesBeforeClose")) or 1 SYMBOL = str(self.GetParameter("Symbol")) BBLENGTH = int(self.GetParameter("BB Length")) or 20 BBDEV = int(self.GetParameter("BB Deviation")) or 2 MATYPE = str(self.GetParameter("BB MA Type")) or Exponential self.ORDER_MAP = ["Market", "Limit", "StopMarket", "StopLimit", "MarketOnOpen", "MarketOnClose", "OptionExercise"] self.DEBUG = DEBUG_LOG # initialization self.SetStartDate(2020, 9, 1) self.SetEndDate(2020, 9, 30) self.SetCash(100000) self.stock = self.AddEquity(SYMBOL, Resolution.Second) self.SetTimeZone("America/Chicago") self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.Schedule.On(self.DateRules.EveryDay(self.stock.Symbol), self.TimeRules.AfterMarketOpen(self.stock.Symbol, MINUTES_AFTER_OPEN), self.OnMarketOpen) self.Schedule.On(self.DateRules.EveryDay(self.stock.Symbol), self.TimeRules.BeforeMarketClose(self.stock.Symbol, MINUTES_BEFORE_CLOSE), self.OnMarketClose) # set the trade flag to False. we'll only start trading when the flag flips to True (after the market open event) self.tradeFlag = False self.bb = self.BB(SYMBOL, BBLENGTH, 2, MovingAverageType.Exponential, Resolution.Minute) # create the 30-minutes data consolidator #fiveMinuteConsolidator = TradeBarConsolidator(timedelta(minutes=5)) #self.SubscriptionManager.AddConsolidator(SYMBOL, fiveMinuteConsolidator) # register the 30-minute consolidated bar data to automatically update the indicator #self.RegisterIndicator(SYMBOL, self.bb, fiveMinuteConsolidator) #self.RegisterIndicator(SYMBOL, self.bb, timedelta(minutes=5)) self.lastPrice = 0.0 self.pl = 0.0 self._lo = None self.SetWarmUp(120, Resolution.Minute) self.Consolidate(SYMBOL, timedelta(minutes=5), self.OnStockBarConsolidated) # OnMarketOpen event, callback from our TimeRules.AfterMarketOpen initialization def OnMarketOpen(self): # start trading! self.tradeFlag = True # OnMarketClose event, callback from our TimeRules.BeforeMarketClose initialization def OnMarketClose(self): # liquidate all holdings if self.stock.Invested: self.Liquidate(self.stock.Symbol, "EOD Liquidate") else: self.Transactions.CancelOpenOrders() # reset trade flag for following day self.tradeFlag = False if self.DEBUG: self.Debug("Profit/Loss as of " + str(self.Time) + ": " + str(self.pl) + " | Portfolio Value: " + str(self.Portfolio.TotalPortfolioValue)) def CollectData(self): pass def OnStockBarConsolidated(self, consolidated): if self.IsWarmingUp or not self.tradeFlag or not self.bb.IsReady: return open_orders = self.Transactions.GetOpenOrders(self.stock.Symbol) ub = self.bb.UpperBand.Current.Value lb = self.bb.LowerBand.Current.Value shares = self.CalculateOrderQuantity(self.stock.Symbol, 0.6) self.prevCandle = { "Open": consolidated.Open, "High": consolidated.High, "Low": consolidated.Low, "Close": consolidated.Close } # OnData event provided by QC, provides new dataset on each time slice, based on equity resolution def OnData(self, data): # if we're not ready to trade, skip this run if self.IsWarmingUp or not self.tradeFlag: return def OnOrderEvent(self, OrderEvent): if OrderEvent.FillQuantity == 0: return self.lastPrice = float(OrderEvent.FillPrice) order = self.Transactions.GetOrderById(OrderEvent.OrderId) orderType = order.Type self.pl -= order.Value if "liquid" in (str(order.Tag)).lower(): if "short" in (str(order.Tag)).lower(): self.Plot('Stock Plot', 'Liquidate', OrderEvent.FillPrice) if "long" in (str(order.Tag)).lower(): self.Plot('Stock Plot', 'Liquidate', OrderEvent.FillPrice) if "buy" in (str(order.Tag)).lower(): self.Plot('Stock Plot', 'Buy Fill', OrderEvent.FillPrice) if "sell" in (str(order.Tag)).lower(): self.Plot('Stock Plot', 'Sell Fill', OrderEvent.FillPrice) if "profit" in (str(order.Tag)).lower(): self.Plot('Stock Plot', 'Profit', OrderEvent.FillPrice) if self.DEBUG: self.Debug("{} was filled. Tag: {}. Symbol: {}. Quantity: {}. Price: {}, Fee: {}, Trade Value: {}. Running Sum: {}. Portfolio: {}" .format(str(self.ORDER_MAP[order.Type]), str(order.Tag), str(OrderEvent.Symbol), str(OrderEvent.FillQuantity), str(OrderEvent.FillPrice), str(OrderEvent.OrderFee), str(order.Value), str(self.pl), str(self.Portfolio.TotalPortfolioValue)))