Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 264.809% Drawdown 2.200% Expectancy 0 Net Profit 0% Sharpe Ratio 4.411 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.002 Beta 1 Annual Standard Deviation 0.193 Annual Variance 0.037 Information Ratio 5.031 Tracking Error 0 Treynor Ratio 0.851 Total Fees $3.14 |
using MathNet.Numerics.LinearAlgebra; namespace QuantConnect.Algorithm.CSharp { /// <summary> /// Basic template algorithm simply initializes the date range and cash /// </summary> public class PortfolioOptimizationNumericsAlgorithm : QCAlgorithm { private const double _targetReturn = 0.1; private const double _riskFreeRate = 0.01; private double _lagrangeMultiplier; private double _portfolioRisk; private Dictionary<string, double> _mean; private Dictionary<string, double> _stddev; private Dictionary<string, double> _weights; private Matrix<double> R; private Matrix<double> S; private Matrix<double> Sigma; private Vector<double> _discountMeanVector; /// <summary> /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// </summary> public override void Initialize() { SetStartDate(2013, 10, 07); //Set Start Date SetEndDate(2013, 10, 11); //Set End Date SetCash(100000); //Set Strategy Cash // Find more symbols here: http://quantconnect.com/data AddEquity("SPY", Resolution.Second); _mean = new Dictionary<string, double> { {"A", 0.04 }, {"B", 0.08 }, {"C", 0.12 }, {"D", 0.15 }, }; _stddev = new Dictionary<string, double> { {"A", 0.07 }, {"B", 0.12 }, {"C", 0.18 }, {"D", 0.26 }, }; _weights = _mean.ToDictionary(k => k.Key, v => 0.0); S = Matrix<double>.Build.DenseOfDiagonalArray(_stddev.Values.ToArray()); R = Matrix<double>.Build.DenseOfColumnMajor(4, 4, new[] { 1.0, 0.2, 0.5, 0.3, 0.2, 1.0, 0.7, 0.4, 0.5, 0.7, 1.0, 0.9, 0.3, 0.4, 0.9, 1.0 }); Sigma = S * R * S; ComputeLagrangeMultiplier(); ComputeWeights(); ComputePortfolioRisk(); Log(string.Format("Lagrange Multiplier: {0,7:F4}", _lagrangeMultiplier)); Log(string.Format("Portfolio Risk: {0,7:P2} ", _portfolioRisk)); foreach (var symbol in _mean.Keys) { Log(string.Format("{0}: {1,10:P2}\t{2,7:P2}\t{3,7:P2}", symbol, _weights[symbol], _mean[symbol], _stddev[symbol])); } } /// <summary> /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// </summary> /// <param name="data">Slice object keyed by symbol containing the stock data</param> public override void OnData(Slice data) { if (!Portfolio.Invested) { SetHoldings("SPY", 1); Debug("Purchased Stock"); } } private void ComputeLagrangeMultiplier() { _discountMeanVector = Vector<double>.Build.DenseOfArray(_mean.Values.ToArray()) - Vector<double>.Build.Dense(_mean.Count, _riskFreeRate); var denominatorMatrix = _discountMeanVector * Sigma.Inverse() * _discountMeanVector.ToColumnMatrix(); _lagrangeMultiplier = (_targetReturn - _riskFreeRate) / denominatorMatrix.ToArray().First(); } private void ComputeWeights() { var weights = _lagrangeMultiplier * Sigma.Inverse() * _discountMeanVector.ToColumnMatrix(); for (var i = 0; i < weights.RowCount; i++) { var kvp = _weights.ElementAt(i); _weights[kvp.Key] = weights.ToArray()[i, 0]; } } private void ComputePortfolioRisk() { var weights = Vector<double>.Build.DenseOfArray(_weights.Values.ToArray()); var portfolioVarianceMatrix = weights * Sigma * weights.ToColumnMatrix(); _portfolioRisk = Math.Sqrt(portfolioVarianceMatrix.ToArray().First()); } } }