Overall Statistics |
Total Trades 1450 Average Win 0.36% Average Loss -0.18% Compounding Annual Return 68.609% Drawdown 25.600% Expectancy 0.392 Net Profit 68.850% Sharpe Ratio 2.183 Probabilistic Sharpe Ratio 78.823% Loss Rate 54% Win Rate 46% Profit-Loss Ratio 2.04 Alpha 0.261 Beta 0.733 Annual Standard Deviation 0.272 Annual Variance 0.074 Information Ratio 0.873 Tracking Error 0.16 Treynor Ratio 0.812 Total Fees $1572.30 |
# (c) Blash16 from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel # Help us Create.Symbols for manual universes from config import parameters # List of parameters defining the algorithm import universes # Universe Selection classes from universes import Uparam, ManualSymbolsLists, SymbolData from operator import itemgetter class BlashAlgorithm(QCAlgorithm): def Initialize(self): # ------------------------------------ Initialization & setup ---------------------------------------- self.SetTimeZone("America/New_York") # Back testing only self.SetStartDate(parameters["start_date_year"], parameters["start_date_month"], parameters["start_date_day"]) self.SetEndDate(parameters["end_date_year"], parameters["end_date_month"], parameters["end_date_day"]) self.AddEquity(parameters["Benchmark"],Resolution.Daily) self.SetBenchmark(parameters["Benchmark"]) # In live trading actual cash will be set at the Brokerage level self.SetCash(parameters["StartCash"]) # ------------------------------------- Universe creation -------------------------------------------- # self.UniverseSettings.DataNormalizationMode=DataNormalizationMode.Raw ??? self.UniverseSettings.Resolution = Resolution.Hour # Universe list of symbols is refreshed Monthly but symbol data is updated Hourly self.UniverseSettings.Leverage = 1 self.AddRiskManagement(TrailingStopRiskManagementModel(parameters["LossSellTrigger"])) # AUTOMATIC STOP-LOSS SELL if Uparam["SelectedUniverse"] == "": self.AddUniverseSelection(universes.QC500UniverseSelectionModel()) # Auto seleced Universe else: # Manual selected Universes SymbolsList = ManualSymbolsLists[Uparam["SelectedUniverse"]] finalSymbols = [] for ticker in SymbolsList: symbol = Symbol.Create(ticker, SecurityType.Equity, Market.USA) # ??? What if Market is not USA? finalSymbols.append(symbol) self.AddUniverseSelection(ManualUniverseSelectionModel(finalSymbols)) # My "Internal" Universe. # Contains a list of Symbols and Indicators. ??? History? Fundamentals? self.TickerTable = {} # Free slots to invest in self.ToInvest = parameters["MaxNumberOfTickersToInvest"] # Track lost buys because not enough Cash in Portfolio to buy self.LostBuys=0 # Track our buying ticketsize self.TicketSizeValue = parameters["StartCash"] / (parameters["MaxNumberOfTickersToInvest"]+parameters["CashBufferNumber"]) # track dates of last time a symbol was sold. Enables us to implement SellCooldown self.SoldSymbolDates = {} self.SetWarmUp(timedelta(days=30)) # ----------------------------------------- Schedules --------------------------------------------- if parameters["SellLaggards"]: self.Schedule.On(self.DateRules.MonthStart(), self.TimeRules.At(9, 0), self.SellLaggardsFunction) # parameters["SellLaggardsFrequency"] self.Schedule.On(self.DateRules.Every(parameters["SellFrequency"]), self.TimeRules.At(10, 0), self.SellFunction) self.Schedule.On(self.DateRules.Every(parameters["BuyFrequency"]), self.TimeRules.At(11, 0), self.BuyFunction) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(12,0), self.PlotStuff) # ----------------------------------------- Opening Log-------------------------------------------- self.Debug(f"Blash16: {self.Time}") if self.LiveMode: self.Debug("Trading Live!") self.Log(f"Init done:{self.Time} Cash:{self.Portfolio.Cash}") self.Log(f'Universe:{Uparam["SelectedUniverse"]} MaxInvested:{parameters["MaxNumberOfTickersToInvest"]}') self.Log(f'SMAgap:{parameters["SMABuyGapTrigger"]} SellGain:{parameters["GainSellTrigger"]} SellLoss:{parameters["LossSellTrigger"]}') self.Log("---") # ---------------------------------------- New Benchmark plot -------------------------------------------- # Variable to hold the last calculated benchmark value self.lastBenchmarkValue = None # Our inital benchmark value scaled to match our portfolio self.BenchmarkPerformance = self.Portfolio.TotalPortfolioValue # ------------------------------------------------------------------------------------------------------ # ---------------------------------------------- Buy loop ---------------------------------------------- def BuyFunction(self): # Calculate how many investments (Equities) we currently have investedPortfolio = [x.Key.Value for x in self.Portfolio if x.Value.Invested] numberOfSymbolsInvested = len(investedPortfolio) # Find how many open positions to be invested before we reach our Max limit self.ToInvest = parameters["MaxNumberOfTickersToInvest"] - numberOfSymbolsInvested if self.ToInvest == 0: return # For Graph display self.TicketSizeValue = self.Portfolio.TotalPortfolioValue / (parameters["MaxNumberOfTickersToInvest"]+parameters["CashBufferNumber"]) # ---- check for Candidates self.SymbolCandidateList = self.CheckCandidates() # ---- sort candidates self.RankedSymbolCandidateList = self.RankCandidates(self.SymbolCandidateList) # ---- buy best candidates self.BuyCandidates(self.RankedSymbolCandidateList) # ------------------------------------------- Check Candidates ------------------------------------------ def CheckCandidates(self): temp_candidate_list = [] for security, symbolData in self.TickerTable.items(): symbol = security.Symbol if not self.Portfolio[symbol].Invested or parameters["AllowMultipleBuysBeforeSell"]: # Check SellCooldown if symbol in self.SoldSymbolDates: last_sale_time = self.SoldSymbolDates[symbol] current_time = self.Time if (current_time - last_sale_time).days < parameters["SellCooldown"]: continue # Indicators RSI = symbolData.rsi.Current.Value SMA = symbolData.sma.Current.Value PPO = symbolData.ppo.Current.Value # Fundamentals # Bring Fundanetal data here # Strategy point: The algo for Candidate selection (based on indicators and fundamentals) if ( RSI <= parameters["RSIBuyGapTrigger"]) and (PPO <= parameters["PPOBuyGapTrigger"]) and (SMA > self.Securities[symbol].Price * parameters["SMABuyGapTrigger"]): temp_candidate_list.append(security) return temp_candidate_list # ---------------------------------------- Rank (sort) Candidates --------------------------------------- def RankCandidates(self, SymbolCandidateList): temp_list = [] for security in SymbolCandidateList: temp_list.append([security, self.TickerTable[security].rsi.Current.Value, self.TickerTable[security].sma.Current.Value, self.TickerTable[security].ppo.Current.Value]) # Strategy point: The algo for Candidate sorting (based on indicators and fundamentals we collected) if parameters["SortCandidatesby"] == "RSI": RankedSymbolCandidateList = sorted(temp_list, key=itemgetter(1))[:self.ToInvest] # sort by RSI and return :ToInvest best results elif parameters["SortCandidatesby"] == "PPO": RankedSymbolCandidateList = sorted(temp_list, key=itemgetter(3))[:self.ToInvest] # sort by RSI and return :ToInvest best results elif parameters["SortCandidatesby"] == "PPO&RSI": RankedSymbolCandidateList = sorted(temp_list, key=itemgetter(3,1))[:self.ToInvest] # sort by RSI and return :ToInvest best results elif parameters["SortCandidatesby"] == "RSI&PPO": RankedSymbolCandidateList = sorted(temp_list, key=itemgetter(1,3))[:self.ToInvest] # sort by RSI and return :ToInvest best results else: RankedSymbolCandidateList = temp_list[:self.ToInvest] return RankedSymbolCandidateList # ---------------------------------------- Buy winning Candidates --------------------------------------- def BuyCandidates(self, RankedSymbolCandidateList): for record in self.RankedSymbolCandidateList: security = record[0] symbol = security.Symbol # collect for taagging Order only RSI = record[1] SMA = record[2] PPO = record[3] cash = self.Portfolio.MarginRemaining # How much cash we have free portfolio_percentage = 1 / parameters["MaxNumberOfTickersToInvest"] # What percent of the Portfolio we want to allocate quantity = self.CalculateOrderQuantity(symbol, portfolio_percentage) # What is the quantity we need to buy close_price = self.Securities[symbol].Price # What is the current equity price cost_of_trade = close_price * quantity # What is the cost of the expected order adj_cost_of_trade = cost_of_trade * (1 + parameters["CashTradeBuffer"]) # Cost or order adjusted to include a buffer if cash > adj_cost_of_trade: #self.Debug(f"margin: {cash} - cost: {adj_cost_of_trade}") #self.Debug(len([symbol for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested])) #self.Debug([(symbol.Value, self.Portfolio[symbol].HoldingsValue) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]) self.SetHoldings(symbol, 1/ (parameters["MaxNumberOfTickersToInvest"]+parameters["CashBufferNumber"]), False, "Buy: "+ str(symbol)+ " SMA:"+str(round(SMA,2))+" RSI:"+str(round(RSI,2))+" PPO:"+str(round(PPO,2))+" Cash B4:"+str(round(self.Portfolio.Cash,2))+" ToInvest:"+str(self.ToInvest)) else: self.LostBuys+=1 # ----------------------------------------- Sell loop ----------------------------------------- def SellFunction(self): investedPortfolio = [x.Key.Value for x in self.Portfolio if x.Value.Invested] numberOfSymbolsInvested = len(investedPortfolio) for security, symbolData in self.TickerTable.items(): symbol = security.Symbol if self.Portfolio[symbol].Invested: if self.Portfolio[symbol].UnrealizedProfitPercent >= parameters["GainSellTrigger"]: self.Liquidate(symbol, "Profit: "+str(symbol)+" Gain:"+str(round(self.Portfolio[symbol].UnrealizedProfitPercent*100,2))+"%") self.SoldSymbolDates[symbol]=self.Time # ------------------------------------- Sell Laggards loop ------------------------------------- def SellLaggardsFunction(self): #self.Debug(len([symbol for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested])) #self.Debug([(symbol.Value, self.Portfolio[symbol].HoldingsValue) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]) #investedPortfolio = [[x.Key.Value,x.Value.UnrealizedProfitPercent] for x in self.Portfolio if x.Value.Invested] investedPortfolio = [[symbol,self.Portfolio[symbol].UnrealizedProfitPercent] for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested] numberOfSymbolsInvested = len(investedPortfolio) if numberOfSymbolsInvested > 0: sortedInvestedPortfolio = sorted(investedPortfolio, key=itemgetter(1), reverse = False) # How many we need to clear? toLiquidate = max(parameters["MaxNumberOfTickersToInvest"]-self.ToInvest-1, parameters["NumberLaggrardToSell"]) if toLiquidate > 0: for i in range(0,toLiquidate): if i<numberOfSymbolsInvested: symbol= sortedInvestedPortfolio[i][0] self.Liquidate(symbol, "Laggard: "+str(symbol)+" Unrealized:"+str(round(self.Portfolio[symbol].UnrealizedProfitPercent*100,2))+"%") self.SoldSymbolDates[symbol]=self.Time # -------------------------------------- Plots and Graphs -------------------------------------- def PlotStuff(self): self.Plot('Portfolio Cash', 'Cash', self.Portfolio.Cash) self.Plot('Lost buys', 'Lost', self.LostBuys) self.Plot('Margin Remaining', 'MarginRemaining', self.Portfolio.MarginRemaining) self.Plot('Ticket Size', 'Size', self.TicketSizeValue) self.Plot('To Invest','ToInvest', self.ToInvest) bench = self.Securities[parameters["Benchmark"]].Close if self.lastBenchmarkValue is not None: self.BenchmarkPerformance = self.BenchmarkPerformance * (bench/self.lastBenchmarkValue) # store today's benchmark close price for use tomorrow self.lastBenchmarkValue = bench # make our plots self.Plot(parameters["AlgoName"] + " vs Benchmark", "Portfolio", self.Portfolio.TotalPortfolioValue) self.Plot(parameters["AlgoName"] + " vs Benchmark", parameters["Benchmark"], self.BenchmarkPerformance) # ------------------------------------------ On Data ------------------------------------------ def OnData(self, data): pass # -------------------------------------- On Securities Change --------------------------------------- def OnSecuritiesChanged(self, changes): self.changes = changes self.Log(f"OnSecuritiesChanged({self.Time}):: {changes}") for security in changes.RemovedSecurities: #self.Liquidate(security) self.TickerTable.pop(security, None) for security in changes.AddedSecurities: if security not in self.TickerTable and security.Symbol.Value != parameters["Benchmark"]: symbol = security.Symbol rsi = self.RSI(symbol, 14, Resolution.Daily) sma = self.SMA(symbol, 30, Resolution.Daily) ppo = self.PPO(symbol, 4, 14, MovingAverageType.Simple, Resolution.Daily) symbolData = SymbolData(symbol, rsi, sma, ppo) self.TickerTable[security] = symbolData # ------------------------------------------- On End -------------------------------------------- def OnEndOfAlgorithm(self): self.Liquidate() #for security in self.Portfolio: # if self.Portfolio[security.Symbol].Invested: # ??? # self.Debug(str(ticker)+" "+str(self.Portfolio[ticker].Quantity)) self.Debug(len([symbol for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested])) self.Debug([(symbol.Value, self.Portfolio[symbol].HoldingsValue) for symbol in self.Portfolio.Keys if self.Portfolio[symbol].Invested]) self.Debug("Cash: "+str(self.Portfolio.Cash)) self.Debug("Total Holdings Value: "+str(self.Portfolio.TotalHoldingsValue)) self.Debug("Total Portfolio Value: "+str(self.Portfolio.TotalPortfolioValue)) self.Debug("Lost buys: "+str(self.LostBuys))
# (c) Blash17 # Confidential parameters = {} parameters["AlgoName"] = "BLASH17" parameters["StartCash"] = 100000 # First Cash deposit for the Algorithm parameters["MaxNumberOfTickersToInvest"] = 20 # Max Number of Equities we will invest in parameters["CashBufferNumber"] = 1 # We we allocate investment (% of Holdings) we will allocate to ["MaxNumberOfTickersToInvest"] + ["CashBufferNumber"] so we don't risk too low cash parameters["CashTradeBuffer"] = 0.02 # Each trade(order) cash buffer parameters["AllowDebt"] = False # ------ To Be implemented. True is we allow the algorithm to buy equity even without sufficient free cash. False is in no condition we allow to be cash negative. parameters["AllowPortfolioRedestribution"] = False # ??? if not enough free cash to buy a new stock. Do we sell the relevant part of the portfolio to generate Cash for the buy. # if we don't AllowDebt or AllowPortfolioRedistribuion - no Buy will be made and we get a warning message. parameters["AllowMultipleBuysBeforeSell"] = False # Can you buy a ticker tou own before you sell it parameters["SMABuyGapTrigger"] = 1.00 # For Buy current Price should be lower (reverse momentum) than Historic price times BuyPercentTrigger. The higher this number is we'll make more Buys parameters["RSIBuyGapTrigger"] = 100 # <= For Buy parameters["RSITriggerDirection"] = "down" parameters["PPOBuyGapTrigger"] = 3 # <= parameters["PPOTriggerDirection"] = "down" parameters["GainSellTrigger"] = 0.14 # Increase needed to Sell decision --- Tagged "Profit" parameters["LossSellTrigger"] = 0.08 # Loss needed for Sell decision --- Tagged "Loss" parameters["SellCooldown"] = 0 # ??? How many trading days the Algoritm must wait before it is allowed to consider buying the Stock again. parameters["SortCandidatesby"] = "PPO&RSI" ## this is a whitelist. only 'RSI', 'PPO', 'SMA', 'RSI&PPO', 'PPO&RSI' allowed. add here if new options parameters["BuyFrequency"] = [DayOfWeek.Monday,DayOfWeek.Tuesday,DayOfWeek.Wednesday,DayOfWeek.Thursday,DayOfWeek.Friday] parameters["SellFrequency"] = [DayOfWeek.Monday,DayOfWeek.Tuesday,DayOfWeek.Wednesday,DayOfWeek.Thursday,DayOfWeek.Friday] parameters["SellLaggardsFrequency"] = [DayOfWeek.Monday] parameters["SellLaggards"] = True parameters["NumberLaggrardToSell"] = 3 # Back testing dates parameters["start_date_year"] = 2020 parameters["start_date_month"] = 1 parameters["start_date_day"] = 1 parameters["end_date_year"] = 2020 parameters["end_date_month"] = 12 parameters["end_date_day"] = 31 parameters["Benchmark"] = "QQQ" parameters["AllowMultipleBuysBeforeSell"] = False parameters["MonkeyBuyer"] = False parameters["MonkeySeller"] = False parameters["SMA days"] = 30
#
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel Uparam = {} Uparam["SelectedUniverse"]= "nasdaq100_A2Z" # if blank go for Automatic Universe selection Uparam["CoarseUniverseSize"] = 3000 Uparam["FineUniverseSize"] =102 Uparam["UniverseMinMarketCap"] = 2e9 Uparam["PrimaryExchangeID"] = ["NAS"] Uparam["UniverseSectors"] = [MorningstarSectorCode.BasicMaterials, MorningstarSectorCode.ConsumerCyclical, MorningstarSectorCode.FinancialServices, MorningstarSectorCode.RealEstate, MorningstarSectorCode.ConsumerDefensive, MorningstarSectorCode.Healthcare, MorningstarSectorCode.Utilities, MorningstarSectorCode.CommunicationServices, MorningstarSectorCode.Energy, MorningstarSectorCode.Industrials, MorningstarSectorCode.Technology] ManualSymbolsLists = {"nasdaq100_A2Z":["AAPL","ADBE","ADI","ADP","ADSK","AEP","ALGN","ALXN","AMAT","AMD","AMGN","AMZN","ANSS","ASML","ATVI","AVGO","BIDU","BIIB","BKNG","CDNS","CDW","CERN","CHKP","CHTR","CMCSA","COST","CPRT","CSCO","CSX","CTAS","CTSH","DLTR","DOCU","DXCM","EA","EBAY","EXC","FAST","FB","FISV","FOX","FOXA","GILD","GOOG","GOOGL","IDXX","ILMN","INCY","INTC","INTU","ISRG","JD","KDP","KHC","KLAC","LRCX","LULU","MAR","MCHP","MDLZ","MELI","MNST","MRNA","MRVL","MSFT","MTCH","MU","MXIM","NFLX","NTES","NVDA","NXPI","OKTA","ORLY","PAYX","PCAR","PDD","PEP","PTON","PYPL","QCOM","REGN","ROST","SBUX","SGEN","SIRI","SNPS","SPLK","SWKS","TCOM","TEAM","TMUS","TSLA","TXN","VRSK","VRSN","VRTX","WBA","WDAY","XEL","XLNX","ZM"], "nasdaq100_S2L":["FOX","FOXA","CHKP","CDW","TCOM","INCY","VRSN","CERN","MXIM","SIRI","DLTR","SWKS","CPRT","FAST","SPLK","PAYX","VRSK","ANSS","SGEN","ORLY","CTAS","OKTA", "PCAR","XEL","ALXN","XLNX","MRVL","DXCM","MTCH","CDNS","EBAY","MAR","KHC","MCHP","ROST","AEP","WBA","SNPS","BIIB","EXC","IDXX","ALGN","EA","CTSH","KDP","LULU","MNST", "PTON","KLAC","NXPI","DOCU","MRNA","WDAY","REGN","ADI","TEAM","ILMN","VRTX","ADSK","CSX","ADP","FISV","ATVI","NTES","MDLZ","LRCX","GILD","BKNG","BIDU","ISRG","MU","AMAT", "MELI","INTU","AMD","ZM","SBUX","CHTR","JD","AMGN","TXN","COST","TMUS","QCOM","AVGO","CSCO","PEP","PDD","CMCSA","ADBE","INTC","ASML","NFLX","PYPL","NVDA","FB","TSLA", "GOOGL","GOOG","AMZN","MSFT","AAPL"], "nasdaq100_L2S":["AAPL","MSFT","AMZN","GOOG","GOOGL","TSLA","FB","NVDA","PYPL","NFLX","ASML","INTC","ADBE","CMCSA","PDD","PEP","CSCO","AVGO","QCOM","TMUS","COST","TXN","AMGN","JD","CHTR","SBUX","ZM","AMD","INTU","MELI","AMAT","MU","ISRG","BIDU","BKNG","GILD","LRCX","MDLZ","NTES","ATVI","FISV","ADP","CSX","ADSK","VRTX","ILMN","TEAM","ADI","REGN","WDAY","MRNA","DOCU","NXPI","KLAC","PTON","MNST","LULU","KDP","CTSH","EA","ALGN","IDXX","EXC","BIIB","SNPS","WBA","AEP","ROST","MCHP","KHC","MAR","EBAY","CDNS","MTCH","DXCM","MRVL","XLNX","ALXN","XEL","PCAR","OKTA","CTAS","ORLY","SGEN","ANSS","VRSK","PAYX","SPLK","FAST","CPRT","SWKS","DLTR","SIRI","MXIM","CERN","VRSN","INCY","TCOM","CDW","CHKP","FOXA","FOX"], "debug_list":["MSFT"] } # ------------------------------------- Symbol Data ----------------------------------------- class SymbolData: def __init__(self, symbol, rsi, sma, ppo): self.Symbol = symbol self.rsi = rsi self.sma = sma self.ppo = ppo # ------------------------------ QC500UniverseSelectionModel --------------------------------- class QC500UniverseSelectionModel(FundamentalUniverseSelectionModel): '''Defines the QC500 universe as a universe selection model for framework algorithm For details: https://github.com/QuantConnect/Lean/pull/1663''' def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None): '''Initializes a new default instance of the QC500UniverseSelectionModel''' super().__init__(filterFineData, universeSettings, securityInitializer) self.numberOfSymbolsCoarse = Uparam["CoarseUniverseSize"] self.numberOfSymbolsFine = Uparam["FineUniverseSize"] self.sorted1BySymbol = {} self.lastMonth = -1 def SelectCoarse(self, algorithm, coarse): '''coarse selection Must have fundamental data Must have positive previous-day close price Must have positive volume on the previous trading day Sort by tarde Dollar Volume (previous day) ''' if algorithm.Time.month == self.lastMonth: return Universe.Unchanged self.lastMonth = algorithm.Time.month sorted1 = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price >0], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.sorted1BySymbol = {x.Symbol:x.DollarVolume for x in sorted1} # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated count = len(self.sorted1BySymbol) #algorithm.Debug("U coarse:"+str(count)) if count == 0: return Universe.Unchanged # return the symbol objects our sorted collection return list(self.sorted1BySymbol.keys()) def SelectFine(self, algorithm, fine): # fine is a list of FineFundamental objects # expects is to return a list of Symbol objects # Strategy point: Sorts our list sortedBySector = sorted([x for x in fine if x.CompanyReference.PrimaryExchangeID in Uparam["PrimaryExchangeID"] #and x.CompanyReference.CountryId == "USA" #and (algorithm.Time - x.SecurityReference.IPODate).days > 30 #and x.ValuationRatios.ForwardPERatio > 0 and x.AssetClassification.MorningstarSectorCode in Uparam["UniverseSectors"] and x.MarketCap >= Uparam["UniverseMinMarketCap"]], key = lambda x: x.MarketCap, reverse = True) count = len(sortedBySector) algorithm.Debug("U fine:"+str(count)) if count == 0: return Universe.Unchanged # converts our list of fine to a list of Symbols sortedBySectorSymbols = [f.Symbol for f in sortedBySector] # logging fine Universe ??? #algorithm.Debug(str(algorithm.Time)+" " +str(len(sortedBySectorSymbols))) #counter = self.numberOfSymbolsFine #for security in sortedBySectorSymbols: # algorithm.Debug(security) # counter +=1 # if counter == self.numberOfSymbolsFine: # break return sortedBySectorSymbols[:self.numberOfSymbolsFine]