Overall Statistics |
Total Trades 236 Average Win 0.09% Average Loss -0.06% Compounding Annual Return -0.028% Drawdown 0.800% Expectancy -0.046 Net Profit -0.341% Sharpe Ratio -0.067 Probabilistic Sharpe Ratio 0.000% Loss Rate 62% Win Rate 38% Profit-Loss Ratio 1.50 Alpha -0.001 Beta 0.004 Annual Standard Deviation 0.003 Annual Variance 0 Information Ratio -0.637 Tracking Error 0.146 Treynor Ratio -0.054 Total Fees $236.00 Estimated Strategy Capacity $1500000000.00 Lowest Capacity Asset NUGT US9M4E7GANAD |
#region imports using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Globalization; using System.Drawing; using QuantConnect; using QuantConnect.Algorithm.Framework; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Parameters; using QuantConnect.Benchmarks; using QuantConnect.Brokerages; using QuantConnect.Util; using QuantConnect.Interfaces; using QuantConnect.Algorithm; using QuantConnect.Indicators; using QuantConnect.Data; using QuantConnect.Data.Consolidators; using QuantConnect.Data.Custom; using QuantConnect.DataSource; using QuantConnect.Data.Fundamental; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Notifications; using QuantConnect.Orders; using QuantConnect.Orders.Fees; using QuantConnect.Orders.Fills; using QuantConnect.Orders.Slippage; using QuantConnect.Scheduling; using QuantConnect.Securities; using QuantConnect.Securities.Equity; using QuantConnect.Securities.Future; using QuantConnect.Securities.Option; using QuantConnect.Securities.Forex; using QuantConnect.Securities.Crypto; using QuantConnect.Securities.Interfaces; using QuantConnect.Storage; using QuantConnect.Data.Custom.AlphaStreams; using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm; using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm; #endregion /* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System.Collections.Concurrent; namespace QuantConnect.Algorithm.CSharp { /// <summary> /// Tests a wide variety of liquid and illiquid stocks together, with bins /// of 20 ranging from micro-cap to mega-cap stocks. /// </summary> public class MACDCrossOverAlgorithmMultipleStocks : QCAlgorithm { public List<SymbolData> Data; private const decimal TargetPercent = 0.1m; public override void Initialize() { SetStartDate(2011, 1, 1); SetWarmup(1000); SetCash(10000); Data = new List<SymbolData> { new SymbolData(this, AddEquity("TQQQ", Resolution.Daily).Symbol), new SymbolData(this, AddEquity("SQQQ", Resolution.Daily).Symbol), new SymbolData(this, AddEquity("NUGT", Resolution.Daily).Symbol), new SymbolData(this, AddEquity("SPY", Resolution.Daily).Symbol) }; } public override void OnData(Slice data) { foreach (var sd in Data) { if (!data.Bars.ContainsKey(sd.Symbol)) { continue; } if (!Portfolio.Invested && sd.IsCrossed && data.Bars[sd.Symbol].Price > sd.EMA200) { SetHoldings(sd.Symbol, 0.01); } else if (Portfolio.Invested && !sd.IsCrossed) { Liquidate(sd.Symbol); } } } public class SymbolData { public Symbol Symbol; public readonly ExponentialMovingAverage EMA200; public readonly MovingAverageConvergenceDivergence MACD; public bool IsCrossed => SignalDeltaPercent > 0; public SymbolData(QCAlgorithm algorithm, Symbol symbol) { Symbol = symbol; MACD = algorithm.MACD(symbol, 12, 26, 9, MovingAverageType.Exponential, Resolution.Daily); EMA200 = algorithm.EMA(symbol, 200, Resolution.Daily); } public decimal SignalDeltaPercent { get { if (MACD.Fast == 0) return 0; return (MACD - MACD.Signal) / MACD.Fast; } } } } }