Overall Statistics |
Total Trades 3524 Average Win 1.15% Average Loss -0.95% Compounding Annual Return 17.374% Drawdown 35.500% Expectancy 0.222 Net Profit 3356.721% Sharpe Ratio 1.074 Probabilistic Sharpe Ratio 49.997% Loss Rate 45% Win Rate 55% Profit-Loss Ratio 1.21 Alpha 0.114 Beta 0.513 Annual Standard Deviation 0.142 Annual Variance 0.02 Information Ratio 0.549 Tracking Error 0.139 Treynor Ratio 0.297 Total Fees $80745.74 |
## T. Smith - Reductionist ROC comparison XLI-XLU - Faster trading - Long SPY only - Sharpe >1 since 1999 - Inspired by Vladimir & Peter Guenther import numpy as np class DualMomentumInOut(QCAlgorithm): def Initialize(self): self.SetStartDate(1999, 1, 1) self.cap = 100000 self.RETURN = 10 self.STK = self.AddEquity('SPY', Resolution.Hour).Symbol self.XLI = self.AddEquity('XLI', Resolution.Hour).Symbol self.XLU = self.AddEquity('XLU', Resolution.Hour).Symbol self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol self.pairs = [self.XLI, self.XLU] self.wt = {} self.real_wt = {} self.mkt = [] self.SetWarmUp(timedelta(350)) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(TimeSpan.FromMinutes(240)), self.daily_check) symbols = self.pairs for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(hours=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, self.RETURN + 1, Resolution.Hour) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(self.RETURN + 1):] def daily_check(self): r = self.history.pct_change(self.RETURN).iloc[-1] if (r[self.XLI] < r[self.XLU]): self.wt[self.STK] = 0 self.trade() else: self.wt[self.STK] = 1 self.trade() def trade(self): for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def OnEndOfDay(self): mkt_price = self.Securities[self.MKT].Close self.mkt.append(mkt_price) mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap self.Plot('Strategy Equity', 'SPY', mkt_perf) for sec, weight in self.wt.items(): self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4) self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))