Overall Statistics |
Total Orders 1243 Average Win 0.83% Average Loss -0.07% Compounding Annual Return 179.914% Drawdown 44.100% Expectancy 12.453 Start Equity 100000 End Equity 6150574.8 Net Profit 6050.575% Sharpe Ratio 3.097 Sortino Ratio 3.292 Probabilistic Sharpe Ratio 99.918% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 12.48 Alpha 1.137 Beta 0.021 Annual Standard Deviation 0.368 Annual Variance 0.135 Information Ratio 2.732 Tracking Error 0.391 Treynor Ratio 53.149 Total Fees $64105.70 Estimated Strategy Capacity $9000.00 Lowest Capacity Asset SVXY 32N73JS5UWN0M|SVXY V0H08FY38ZFP Portfolio Turnover 0.29% |
# region imports from AlgorithmImports import * from scipy import special from scipy.stats import gamma, invweibull # endregion class MaxLossVaRShortPut(QCAlgorithm): def initialize(self): self.set_start_date(2021, 1, 1) self.set_end_date(2025, 1, 1) self.set_cash(100000) self.set_security_initializer(VolumeShareFillSecurityInitializer(self, 1)) self.universe_settings.data_normalization_mode = DataNormalizationMode.RAW # We want to trade the 95%VaR. self._alpha = 0.95 self.lookback = 1000 self.trade_period = 5 self._orders = {} self.put_strikes = {} self.symbols = [self.add_equity(ticker).symbol for ticker in ["TQQQ", "SVXY", "TMF", "EDZ", "UGL", "UUP"]] # Rebalance weekly since we're trading the option expiring this week to avoid over-trading. self.schedule.on( self.date_rules.week_start(self.symbols[0]), self.time_rules.after_market_open(self.symbols[0], 1), self.rebalance ) def rebalance(self): # Call the historical data to fit the Inverse Weibull distribution to model max loss. ret = self.history(self.symbols, 252+self.lookback+self.trade_period, Resolution.DAILY).close.unstack(0).pct_change().dropna() # Obtain the trade parameters, including strike price and expected loss. cvar = self.get_var(ret) # Short a put to earn credit in N% confidence that it will not be assigned. for symbol, strike in self.put_strikes.items(): chain = self.option_chain(symbol) # Trade the week-expiring put to ensure short value and liquidity. filtered = [x for x in chain if x.right == OptionRight.PUT and x.expiry <= self.time + timedelta(self.trade_period + 1)] if filtered: expiry = max(x.expiry for x in filtered) put = sorted( [x for x in filtered if x.expiry == expiry], key=lambda x: abs(x.strike - strike) ) if not put: continue # Request the contract data for trading. put_symbol = self.add_option_contract(put[0]).symbol # Position sizing by the Kelly Criterion to maximize expected return. strike = put_symbol.id.strike_price weight = self.get_bet_weight(put_symbol, strike, cvar[symbol]) # Obtain the actual number of contract to be ordered. quantity = weight * self.portfolio.total_portfolio_value / strike // self.securities[put_symbol].symbol_properties.contract_multiplier if quantity: self._orders[put_symbol] = quantity def get_bet_weight(self, symbol, strike, cvar): price = self.securities[symbol].bid_price if self.securities[symbol].bid_price != 0 else self.securities[symbol].price # Use CVaR minus strike as the expected loss. # Accounted for commission also (both buy and sell plus other costs), we estimate the cost to be $1.3 per contract. multiplier = self.securities[symbol].symbol_properties.contract_multiplier loss = (cvar - strike + 1.3 / multiplier) / price gain = (price - 1.3 / multiplier) / price if gain <= 0: return 0 # Kelly criterion formula: win rate / expected loss - loss rate / expected win # Win and loss rate was set according to VaR. k = self._alpha / loss - (1 - self._alpha) / gain # Reducing 50% risk by 25% bet (Ed Thorp) # We limit the maximum position to be 10%. return min(0.1, k * 0.75) def get_var(self, ret): self.put_strikes.clear() cvar = {} # Obtain the rolling max loss to fit the Inverse Weibull distribution to model catastrophic loss. max_loss = ((1 + ret).rolling(self.trade_period).apply(np.prod, raw=True) - 1).rolling(self.lookback).min().iloc[self.lookback+self.trade_period:] for symbol in max_loss.columns: # Fit Inverse Weibull distribution. params = invweibull.fit(max_loss[symbol]) shape, loc, scale = params # Get N% VaR of each symbol analytically as the N% confident level that the put will not be assigned. # We also need the CVaR to measure the loss of the bet. pi = scale * (-np.log(1 - self._alpha) ** (1 / shape)) var_ = loc + pi cvar_ = var_ + scale * special.gamma(1 - 1 / shape) * gamma.cdf((scale / pi) ** shape, 1 - 1 / shape) / self._alpha cvar[symbol] = abs(cvar_) * self.securities[symbol].price self.put_strikes[symbol] = (1 - abs(var_)) * self.securities[symbol].price return cvar def on_data(self, slice): # Order when there is a quote to be more realistic and likely to be filled. for symbol, size in self._orders.copy().items(): bar = slice.quote_bars.get(symbol) if bar: self.limit_order(symbol, -size, round(bar.high, 2)) self._orders.pop(symbol) def on_assignment_order_event(self, assignment_event): # Liquidate the assigned underlyings to avoid volatility. self.market_order( assignment_event.symbol.underlying, -assignment_event.fill_quantity * self.securities[assignment_event.symbol].symbol_properties.contract_multiplier, tag="liquidate assigned" ) class VolumeShareFillModel(FillModel): def __init__(self, algorithm: QCAlgorithm, maximum_ratio: float = 1): self.algorithm = algorithm self.maximum_ratio = maximum_ratio self.absolute_remaining_by_order_id = {} def market_fill(self, asset, order): absolute_remaining = self.absolute_remaining_by_order_id.get(order.id, order.absolute_quantity) fill = super().market_fill(asset, order) # Set the fill amount to 100% of the previous bar. volume = asset.bid_size if order.quantity < 0 else asset.ask_size fill.fill_quantity = np.sign(order.quantity) * volume * self.maximum_ratio if (min(abs(fill.fill_quantity), absolute_remaining) == absolute_remaining): fill.fill_quantity = np.sign(order.quantity) * absolute_remaining fill.status = OrderStatus.FILLED self.absolute_remaining_by_order_id.pop(order.id, None) else: fill.status = OrderStatus.PARTIALLY_FILLED self.absolute_remaining_by_order_id[order.id] = absolute_remaining - abs(fill.fill_quantity) price = fill.fill_price return fill class VolumeShareFillSecurityInitializer(BrokerageModelSecurityInitializer): def __init__(self, algorithm: QCAlgorithm, fill_ratio: float = 1) -> None: super().__init__(algorithm.brokerage_model, FuncSecuritySeeder(algorithm.get_last_known_prices)) self.fill_model = VolumeShareFillModel(algorithm, fill_ratio) def initialize(self, security: Security) -> None: super().initialize(security) security.set_fill_model(self.fill_model) security.set_slippage_model(VolumeShareSlippageModel(1, 0.5))