Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import clr from clr import AddReference clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Indicators") clr.AddReference("QuantConnect.Common") from System import * import numpy as np from QuantConnect import * from QuantConnect.Data import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * import decimal as d global stopprice ### <summary> ### In this example we look at the canonical 15/30 day moving average cross. This algorithm ### will go long when the 15 crosses above the 30 and will liquidate when the 15 crosses ### back below the 30. ### </summary> ### <meta name="tag" content="warmup" /> ### <meta name="tag" content="crypto" /> ### <meta name="tag" content="indicators" /> ### <meta name="tag" content="indicator classes" /> ### <meta name="tag" content="moving average cross" /> ### <meta name="tag" content="strategy example" /> class CryptoWarmupMovingAverageCross(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2017, 1, 01) #Set Start Date self.SetEndDate(2017, 10, 23) #Set End Date self.SetCash(40000) #Set Strategy Cash self.previous = None self.stopprice = 999999999 # Set brokerage we are using: GDAX for cryptos self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) # Set crypto to BTC at Minute Resolution self.AddCrypto("BTCUSD", Resolution.Minute) consolidator = TradeBarConsolidator(1440) self.fast_btc = SimpleMovingAverage(10) self.slow_btc = SimpleMovingAverage(20) self.RegisterIndicator("BTCUSD", self.fast_btc, consolidator) self.RegisterIndicator("BTCUSD", self.slow_btc, consolidator) self.SubscriptionManager.AddConsolidator("BTCUSD", consolidator) # "slow_period + 1" because rolling window waits for one to fall off the back to be considered ready # History method returns a dict with a pandas.DataFrame dataset = ["BTCUSD"] startdate = datetime.datetime(2017, 10, 1, 18, 00) enddate = datetime.datetime.now() history = self.History(dataset, startdate, enddate, Resolution.Minute) if history.empty: return # Populate warmup data for index, row in history.loc["BTCUSD"].iterrows(): self.fast_btc.Update(index, row["close"]) self.slow_btc.Update(index, row["close"]) # Log warmup status self.Log("FAST {0} READY. Samples: {1}".format("IS" if self.fast_btc.IsReady else "IS NOT", self.fast_btc.Samples)) self.Log("SLOW {0} READY. Samples: {1}".format("IS" if self.slow_btc.IsReady else "IS NOT", self.slow_btc.Samples)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' # a couple things to notice in this method: # 1. We never need to 'update' our indicators with the data, the engine takes care of this for us # 2. We can use indicators directly in math expressions # 3. We can easily plot many indicators at the same time # wait for our slow ema to fully initialize if not self.fast_btc.IsReady: return if not self.slow_btc.IsReady: return # only once every 15 minutes now = datetime.datetime.now() if self.previous is not None and self.previous + datetime.timedelta(minutes=120) <= now: return # define a small tolerance on our checks to avoid bouncing tolerance = 0.00015 #self.Log("Percentage is {0} ".format(stoppercent)) #self.Log("Current price is {0}".format(str(self.Securities["BTCUSD"].Price))) holdings = self.Portfolio["BTCUSD"].Quantity self.previous = datetime.datetime.now()