Overall Statistics
Total Trades
666
Average Win
0.06%
Average Loss
-0.29%
Compounding Annual Return
-62.696%
Drawdown
22.300%
Expectancy
-0.238
Net Profit
-21.795%
Sharpe Ratio
-5.985
Probabilistic Sharpe Ratio
0%
Loss Rate
36%
Win Rate
64%
Profit-Loss Ratio
0.19
Alpha
-0.56
Beta
0.19
Annual Standard Deviation
0.093
Annual Variance
0.009
Information Ratio
-4.914
Tracking Error
0.118
Treynor Ratio
-2.933
Total Fees
$666.00
class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm):

    def Initialize(self):
        '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''

        self.SetStartDate(2015,4,1)   #Set Start Date
        self.SetEndDate(2015,6,30)    #Set End Date
        self.SetCash(25000)           #Set Strategy Cash

        self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol
        self.UniverseSettings.Resolution = Resolution.Minute
        self.UniverseSettings.Leverage = 2

        self.coarse_count = 10
        self.averages = { }
        self.hold_day={ } # Make an empty dictionary to store holding days
        
        self.long = [ ]
        self.short = [ ]


        # this add universe method accepts two parameters:
        # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
        self.AddUniverse(self.CoarseSelectionFunction)
        
        # Schedule the rebalance function to execute at user defined period
        self.Schedule.On(self.DateRules.EveryDay(self.spy),
        self.TimeRules.Every(TimeSpan.FromMinutes(60)),
        Action(self.rebalance))
        
        # Schedule the holding period function to execute every day
        self.Schedule.On(self.DateRules.EveryDay(self.spy),
        self.TimeRules.BeforeMarketClose(self.spy, 15), 
        Action(self.check_days))


    # sort the data by daily dollar volume and take the top 'NumberOfSymbols'
    def CoarseSelectionFunction(self, coarse):

        
        filtered = [x for x in coarse if 
        5 < x.Price < 500 
        and x.DollarVolume > 1000000 
        and x.HasFundamentalData
        ]

        
        # We are going to use a dictionary to refer the object that will keep the moving averages
        for cf in filtered:
            
            symbol = cf.Symbol
            
            if symbol not in self.averages:
                
                # Call history to get an array of 50 days of history data
                history = self.History(symbol, 50, Resolution.Daily) 
                
                self.averages[symbol] = SymbolData(symbol, history)

            # Updates the SymbolData object with current EOD price
            avg = self.averages[symbol]
            avg.update(cf.EndTime, cf.AdjustedPrice)


        # Filter the values of the dict: we only want up-trending securities
        values = list(filter(lambda x: x.is_uptrend, self.averages.values()))

        # Sorts the values of the dict: we want those with greater difference between the moving averages
        values.sort(key=lambda x: x.scale, reverse=True)

        # for x in values[:self.coarse_count]:
        #     self.Debug('symbol: ' + str(x.symbol.Value) + '  scale: ' + str(x.scale))
        
        self.long = [x.symbol for x in values[:self.coarse_count] if x.is_ready()]
        self.short = [x.symbol for x in values[-self.coarse_count:] if x.is_ready()]
        self.tradingList = self.long
        

        # we need to return only the symbol objects
        return self.tradingList
    
    
    def OnData(self, data):
        pass
    
    def rebalance(self):
        # self.Debug("Rebalance Event started running at: " + str(self.Time))
        
        
        # 1. Cancel entryLong and entryShort tagged limit orders
        
        
        # 2a. Liquidate Positions that reached Max TakeProfit or Holding Time; set hold_day to -1
        for i in self.Portfolio.Values:
            if i.Invested:
                if self.Portfolio[i.Symbol].UnrealizedProfitPercent > 0.0101 or \
                self.hold_day[i.Symbol.Value] >= 5:
                
                    self.Debug(
                        str(i.Symbol.Value) + 
                        "Profit :" + str(self.Portfolio[i.Symbol].UnrealizedProfitPercent))
                    self.Liquidate(i.Symbol)
                
                    try: 
                        self.hold_day[i.Symbol.Value] = -1
                    except:
                        self.Debug("RemovedfromDict: " + str(i.Symbol.Value))

        
        # 3. Reset holding percentage for positive profit positions only
        for i in self.Portfolio.Values:
            if i.Invested and (self.hold_day[i.Symbol.Value] >= 5 or self.Portfolio[i.Symbol].UnrealizedProfitPercent) > 0.005:
                self.SetHoldings(i.Symbol, 0.02)
                self.Debug("Reseting:" + str(i.Symbol.Value))

        
        # 4. Enter new position if it meets long/short entry criteria and not currently
        # invested in that asset
        
        tradingCandidates = self.tradingList
        for symbol in tradingCandidates:
            if not self.Portfolio[symbol].Invested:
                self.SetHoldings(symbol, 0.02, False, "entryLong")
                self.Debug("entryLong: " + str(symbol))
                self.hold_day[symbol.Value] = 0 # Add stock and 0 days to the dictionary

    # this event fires whenever we have changes to our universe
    #def OnSecuritiesChanged(self, changes):
        # liquidate removed securities
        #for security in changes.RemovedSecurities:
            #if security.Invested:
                #self.Liquidate(security.Symbol)

        # we want 20% allocation in each security in our universe
        #for security in changes.AddedSecurities:
            #self.SetHoldings(security.Symbol, 0.1)
    
    # Helper function to count holding days for each holding stock
    def check_days(self):
        
        for i in self.Portfolio.Values:
            if i.Invested:
                self.hold_day[i.Symbol.Value] += 1 # Increment on each holding stock by 1 day


class SymbolData():
    
    """
    Class to update Universe technical indicator data
    
    """
    
    def __init__(self, symbol, history):
        self.tolerance = 1.01
        self. symbol = symbol
        self.fast = ExponentialMovingAverage(3)
        self.slow = ExponentialMovingAverage(45)
        
        self.is_uptrend = False
        self.scale = 0
        
        for bar in history.itertuples():
            self.fast.Update(bar.Index[1], bar.close)
            self.slow.Update(bar.Index[1], bar.close)

    
    def is_ready(self):
        return self.slow.IsReady and self.fast.IsReady
    
    def update(self, time, value):
        if self.fast.Update(time, value) and self.slow.Update(time, value):
            fast = self.fast.Current.Value
            slow = self.slow.Current.Value
            self.is_uptrend = fast > slow * self.tolerance

        if self.is_uptrend:
            self.scale = (fast - slow) / ((fast + slow) / 2.0)