Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 19.664% Drawdown 33.700% Expectancy 0 Net Profit 25.016% Sharpe Ratio 0.738 Probabilistic Sharpe Ratio 34.606% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.255 Beta -0.23 Annual Standard Deviation 0.28 Annual Variance 0.078 Information Ratio -0.01 Tracking Error 0.439 Treynor Ratio -0.897 Total Fees $1.58 Estimated Strategy Capacity $670000000.00 |
import numpy as np class FatBrownChimpanzee(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 1) self.SetCash(100000) self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.SetWarmUp(100) def OnData(self, data): if not self.Portfolio.Invested: self.SetHoldings("SPY", 1) def OnEndOfDay(self): sigma1 = np.log1p(self.History([self.spy], 100, Resolution.Daily).close.pct_change()).std() self.Plot('sigma', 'sigma1', sigma1) sigma2 = float(np.diff(np.log(self.History([self.spy], 100, Resolution.Daily).close)).std()) self.Plot('sigma', 'sigma2', sigma2) sigma3 = self.History([self.spy], 100, Resolution.Daily).close.pct_change().std() self.Plot('sigma', 'sigma3', sigma3)