Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel from Risk.NullRiskManagementModel import NullRiskManagementModel class BasicTemplateFrameworkAlgorithm(QCAlgorithmFramework): def Initialize(self): # Set requested data resolution self.UniverseSettings.Resolution = Resolution.Daily self.coarse_count = 5 self.averages = {} self.SetStartDate(2018, 6, 1) #Set Start Date self.SetEndDate(2018, 9, 29) #Set End Date self.SetCash(100000) #Set Strategy Cash self.SetUniverseSelection(CoarseFundamentalUniverseSelectionModel(self.CoarseSelectionFunction)) self.SetAlpha(HistoricalReturnsAlphaModel(14, Resolution.Daily)) self.SetPortfolioConstruction(NullPortfolioConstructionModel()) self.SetExecution(NullExecutionModel()) self.SetRiskManagement(NullRiskManagementModel()) # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # We are going to use a dictionary to refer the object that will keep the moving averages for cf in coarse: if cf.Symbol not in self.averages: self.averages[cf.Symbol] = SymbolData(cf.Symbol) # Updates the SymbolData object with current EOD price avg = self.averages[cf.Symbol] avg.update(cf) # Filter the values of the dict: wait for indicator to be ready filtered_values = filter(lambda x: (x.is_ready and x.price.Current.Value > 20), self.averages.values()) # Sorts the values of the dict: we want those with greater DollarVolume sorted_values = sorted(filtered_values, key = lambda x: x.vol.Current.Value, reverse = True) for x in sorted_values[:self.coarse_count]: self.Log('symbol: ' + str(x.symbol.Value) + ' close price: ' + str(x.price.Current.Value) + ' mean vol: ' + str(x.vol.Current.Value) + ' mean price: ' + str(x.sma.Current.Value)) # we need to return only the symbol objects return [ x.symbol for x in sorted_values[:self.coarse_count] ] def OnOrderEvent(self, orderEvent): if orderEvent.Status == OrderStatus.Filled: # self.Debug("Purchased Stock: {0}".format(orderEvent.Symbol)) pass class SymbolData(object): def __init__(self, symbol): self.symbol = symbol self.price = SimpleMovingAverage(1) self.vol = SimpleMovingAverage(50) self.sma = SimpleMovingAverage(20) self.is_ready = False def update(self, value): self.is_ready = self.sma.Update(value.EndTime, value.Price) and self.vol.Update(value.EndTime, value.DollarVolume) and self.price.Update(value.EndTime, value.Price)
from clr import AddReference AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Indicators") AddReference("QuantConnect.Common") from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm.Framework.Alphas import * from datetime import timedelta class HistoricalReturnsAlphaModel(AlphaModel): '''Uses Historical returns to create insights.''' def __init__(self, *args, **kwargs): '''Initializes a new default instance of the HistoricalReturnsAlphaModel class. Args: lookback(int): Historical return lookback period resolution: The resolution of historical data''' self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1 self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.lookback) self.symbolDataBySymbol = {} def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.CanEmit: direction = InsightDirection.Flat magnitude = symbolData.Return if magnitude > 0: direction = InsightDirection.Up if magnitude < 0: direction = InsightDirection.Down insights.append(Insight.Price(symbol, self.predictionInterval, direction, magnitude, None)) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) if symbolData is not None: symbolData.RemoveConsolidators(algorithm) # initialize data for added securities symbols = [ x.Symbol for x in changes.AddedSecurities ] history = algorithm.History(symbols, self.lookback, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) if symbol not in self.symbolDataBySymbol: symbolData = SymbolData(symbol, self.lookback) self.symbolDataBySymbol[symbol] = symbolData symbolData.RegisterIndicators(algorithm, self.resolution) symbolData.WarmUpIndicators(history.loc[ticker]) class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback): self.Symbol = symbol self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback) self.Consolidator = None self.previous = 0 def RegisterIndicators(self, algorithm, resolution): self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution) algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator) def RemoveConsolidators(self, algorithm): if self.Consolidator is not None: algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator) def WarmUpIndicators(self, history): for tuple in history.itertuples(): self.ROC.Update(tuple.Index, tuple.close) @property def Return(self): return float(self.ROC.Current.Value) @property def CanEmit(self): if self.previous == self.ROC.Samples: return False self.previous = self.ROC.Samples return self.ROC.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Return)**252 - 1)