Overall Statistics
Total Trades
145
Average Win
0.26%
Average Loss
-0.13%
Compounding Annual Return
-1.935%
Drawdown
3.300%
Expectancy
-0.079
Net Profit
-0.484%
Sharpe Ratio
-0.254
Loss Rate
69%
Win Rate
31%
Profit-Loss Ratio
2.01
Alpha
-0.183
Beta
8.557
Annual Standard Deviation
0.067
Annual Variance
0.004
Information Ratio
-0.545
Tracking Error
0.067
Treynor Ratio
-0.002
Total Fees
$181.58
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from System import *
from QuantConnect import *
from QuantConnect.Data.Consolidators import *
from QuantConnect.Data.Market import *
from QuantConnect.Orders import OrderStatus
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Indicators import *
import numpy as np
from datetime import timedelta, datetime

### <summary>
### Example structure for structuring an algorithm with indicator and consolidator data for many tickers.
### </summary>
### <meta name="tag" content="consolidating data" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="using data" />
### <meta name="tag" content="strategy example" />
class MultipleSymbolConsolidationAlgorithm(QCAlgorithm):
    
    # Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
    def Initialize(self):
        
        # This is the period of bars we'll be creating
        BarPeriod = TimeSpan.FromMinutes(5)
        BarPeriod15 = TimeSpan.FromMinutes(15)

        # This is the period of our sma indicators
        SimpleMovingAveragePeriod = 5
        SimpleMovingAveragePeriod15 = 15

        # This is the number of consolidated bars we'll hold in symbol data for reference
        RollingWindowSize = 10
        # Holds all of our data keyed by each symbol
        self.Data = {}
        self.Data15 = {}

        # Contains all of our equity symbols
        EquitySymbols = ["AAPL","SPY","IBM"]
        self.PositionSize = (1/ len(EquitySymbols))

        self.SetStartDate(2018, 9, 1)
        self.SetEndDate(2018, 12, 1)
        
        # initialize our equity data
        for symbol in EquitySymbols:
            equity = self.AddEquity(symbol)
            self.Data[symbol] = SymbolData(equity.Symbol, BarPeriod, RollingWindowSize)
            self.Data15[symbol] = SymbolData(equity.Symbol, BarPeriod15, RollingWindowSize)


        # loop through all our symbols and request data subscriptions and initialize indicator
        for symbol, symbolData in self.Data.items():
            # define the indicator
            symbolData.SMA = SimpleMovingAverage(self.CreateIndicatorName(symbol, "SMA" + str(SimpleMovingAveragePeriod), Resolution.Minute), SimpleMovingAveragePeriod)
            symbolData.MACD = MovingAverageConvergenceDivergence(self.CreateIndicatorName(symbol, "MACD" + str(SimpleMovingAveragePeriod) , Resolution.Minute), 12, 26, 9, MovingAverageType.Exponential)
            # define a consolidator to consolidate data for this symbol on the requested period
            consolidator = TradeBarConsolidator(BarPeriod) 
        
            consolidator.DataConsolidated += self.OnDataConsolidated
            # write up our consolidator to update the indicator
            # we need to add this consolidator so it gets auto updates
            self.SubscriptionManager.AddConsolidator(symbolData.Symbol, consolidator)
            
        for symbol, symbolData15 in self.Data15.items():
            symbolData15.SMA15 = SimpleMovingAverage(self.CreateIndicatorName(symbol, "SMA15" + str(SimpleMovingAveragePeriod15) , Resolution.Minute), SimpleMovingAveragePeriod)
            symbolData15.MACD15 = MovingAverageConvergenceDivergence(self.CreateIndicatorName(symbol, "MACD15" + str(SimpleMovingAveragePeriod15) , Resolution.Minute), 12, 26, 9, MovingAverageType.Exponential)
            # define a consolidator to consolidate data for this symbol on the requested period
            consolidator15 = TradeBarConsolidator(BarPeriod15) 
            #consolidator15.DataConsolidated += self.OnDataConsolidated
            # write up our consolidator to update the indicator
            # we need to add this consolidator so it gets auto updates
            self.SubscriptionManager.AddConsolidator(symbolData15.Symbol, consolidator15)

    def OnDataConsolidated(self, sender, bar):

        self.Data[bar.Symbol.Value].SMA.Update(bar.Time, bar.Close)
        self.Data[bar.Symbol.Value].MACD.Update(bar.Time, bar.Close)
        self.Data[bar.Symbol.Value].Bars.Add(bar)
        
        self.Data15[bar.Symbol.Value].SMA15.Update(bar.Time, bar.Close)
        self.Data15[bar.Symbol.Value].MACD15.Update(bar.Time, bar.Close)
        #self.Data15[bar.Symbol.Value].Bars15.Add(bar)

    # OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
    # Argument "data": Slice object, dictionary object with your stock data 
    def OnData(self,data):
# loop through each symbol in our structure
        for symbol in self.Data.keys():
            symbolData = self.Data[symbol]
        for symbol in self.Data15.keys():
            symbolData15 = self.Data15[symbol]

            # this check proves that this symbol was JUST updated prior to this OnData function being called        
        
        if not self.Portfolio[symbol].Invested and symbolData15.MACD15.Current.Value > symbolData15.MACD15.Signal.Current.Value and symbolData.MACD.Current.Value > 0 :
                    self.SetHoldings(symbol, self.PositionSize)
        if  self.Portfolio[symbol].Invested and symbolData.MACD.Current.Value < 0 :
                    self.Liquidate(symbol)
                    
                    
        
        """    if symbolData.IsReady() and symbolData.WasJustUpdated(self.Time):
                if not self.Portfolio[symbol].Invested:
                    self.MarketOrder(symbol, 1)"""

    # End of a trading day event handler. This method is called at the end of the algorithm day (or multiple times if trading multiple assets).
    # Method is called 10 minutes before closing to allow user to close out position.
    def OnEndOfDay(self):
        
        i = 0
        for symbol in sorted(self.Data.keys()):
            symbolData = self.Data[symbol]
            # we have too many symbols to plot them all, so plot every other
            i += 1
            if symbolData.IsReady() and i%2 == 0:
                self.Plot(symbol, symbol, symbolData.SMA.Current.Value)
    
       
class SymbolData(object):
    
    def __init__(self, symbol, barPeriod, windowSize):
        self.Symbol = symbol
        # The period used when population the Bars rolling window
        self.BarPeriod = barPeriod

        # A rolling window of data, data needs to be pumped into Bars by using Bars.Update( tradeBar ) and can be accessed like:
        # mySymbolData.Bars[0] - most first recent piece of data
        # mySymbolData.Bars[5] - the sixth most recent piece of data (zero based indexing)
        self.Bars = RollingWindow[IBaseDataBar](windowSize)

        # The simple moving average indicator for our symbol
        self.SMA = None
        self.MACD = None

  
    # Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
    def IsReady(self):
        return self.Bars.IsReady and self.SMA.IsReady and self.MACD.IsReady

    # Returns true if the most recent trade bar time matches the current time minus the bar's period, this
    # indicates that update was just called on this instance
    def WasJustUpdated(self, current):
        return self.Bars.Count > 0 and self.Bars[0].Time == current - self.BarPeriod
        
class SymbolData15(object):
    
    def __init__(self, symbol, barPeriod15, windowSize):
        self.Symbol = symbol
        # The period used when population the Bars rolling window
        self.BarPeriod15 = barPeriod15

        # A rolling window of data, data needs to be pumped into Bars by using Bars.Update( tradeBar ) and can be accessed like:
        # mySymbolData.Bars[0] - most first recent piece of data
        # mySymbolData.Bars[5] - the sixth most recent piece of data (zero based indexing)
        self.Bars15 = RollingWindow[IBaseDataBar](windowSize)

        # The simple moving average indicator for our symbol

        self.SMA15 = None
        self.MACD15 = None
  
    # Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
    def IsReady(self):
        return  self.Bars15.IsReady and self.SMA15.IsReady and self.MACD15.IsReady

    # Returns true if the most recent trade bar time matches the current time minus the bar's period, this
    # indicates that update was just called on this instance
    def WasJustUpdated(self, current):
        return self.Bars15.Count > 0 and self.Bars15[0].Time == current - self.BarPeriod15