Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from QuantConnect.Data.Custom.CBOE import * class VixAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 2) self.SetEndDate(2020, 1, 2) self.SetCash(10000) self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol self.cboeVix = self.AddData(CBOE, "VIX").Symbol self.vixPrevious = None self.vixLatest = None self.pct_change = None self.SetWarmup(2, Resolution.Daily) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen(self.spy, 15), Action(self.Buy)) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen(self.spy, 60), Action(self.Sell)) def OnData(self, data): # Update vix data if data.ContainsKey(self.cboeVix): self.vixPrevious = self.vixLatest self.vixLatest = data.Get(CBOE, self.cboeVix).Close if self.IsWarmingUp: return if not data.Bars.ContainsKey("SPY"): return if self.vixPrevious != 0: self.pct_change = (self.vixLatest - self.vixPrevious) / self.vixPrevious def Buy(self): if self.pct_change is not None and self.pct_change > 0.05: self.SetHoldings("SPY", 1) def Sell(self): self.SetHoldings("SPY", 0)