Overall Statistics |
Total Trades 1719 Average Win 0.04% Average Loss -0.23% Compounding Annual Return 5.980% Drawdown 35.900% Expectancy 0.045 Net Profit 24.201% Sharpe Ratio 0.342 Loss Rate 11% Win Rate 89% Profit-Loss Ratio 0.18 Alpha -0.071 Beta 1.197 Annual Standard Deviation 0.194 Annual Variance 0.037 Information Ratio -0.368 Tracking Error 0.132 Treynor Ratio 0.055 Total Fees $1970.50 |
using MathNet.Numerics.LinearAlgebra; using MathNet.Numerics.LinearRegression; using MathNet.Numerics.Statistics; using QuantConnect.Data; using QuantConnect.Indicators; using System; using System.Collections.Generic; using System.Linq; namespace QuantConnect.Algorithm.CSharp { /// <summary> /// This algorithm uses Math.NET Numerics library, specifically Linear Algebra object (Vector and Matrix) and operations, in order to solve a portfolio optimization problem. /// </summary> public class MultiCorrelation : QCAlgorithm { private string[] _symbols = new string[] { // Using Meb Faber's GTAA paper assets: "SPY", // "AIG", // "BAC" // // Find more symbols here: http://quantconnect.com/data }; private const double _targetReturn = 0.1; private const double _riskFreeRate = 0.01; private double _lagrangeMultiplier; private double _portfolioRisk; private Vector<double> _p; private List<SymbolData> SymbolDataList; /// <summary> /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// </summary> public override void Initialize() { SetCash(100000); //Set Strategy Cash SetStartDate(2013, 1, 1); //Set Start Date SetEndDate(DateTime.Now.AddDays(-1)); //Set End Date SymbolDataList = new List<SymbolData>(); foreach (var symbol in _symbols) { AddEquity(symbol, Resolution.Daily); SymbolDataList.Add(new SymbolData(symbol, History(symbol, 200, Resolution.Daily))); } var X = Matrix<double>.Build. DenseOfColumnArrays(SymbolDataList.Where(x => !x.Symbol.Equals("SPY")).Select(x => x.History)); var y = Vector<double>.Build. DenseOfArray(SymbolDataList.Where(x => x.Symbol.Equals("SPY")).FirstOrDefault().History); _p = MultipleRegression.NormalEquations(X, y); } /// <summary> /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// </summary> /// <param name="data">Slice object keyed by symbol containing the stock data</param> public override void OnData(Slice data) { foreach (var symbolData in SymbolDataList) { if (data.ContainsKey(symbolData.Symbol)) { symbolData.Update(data[symbolData.Symbol]); } } var y = (double)data["SPY"].Close; var x = _p[0] * (double)data["AIG"].Close + _p[1] * (double)data["BAC"].Close; if (x > y) { SetHoldings("AIG", .5); SetHoldings("BAC", .5); } else { SetHoldings("AIG", -.5); SetHoldings("BAC", -.5); } } /// <summary> /// Symbol Data class to store security data (Return, Risk, Weight) /// </summary> class SymbolData { private RollingWindow<double> _rollingHistory; public Symbol Symbol { get; private set; } public double[] History { get { return _rollingHistory.Select(x => x).ToArray(); } } public SymbolData(Symbol symbol, IEnumerable<BaseData> history) { Symbol = symbol; _rollingHistory = new RollingWindow<double>(200); foreach (var data in history) { Update(data); } } public void Update(BaseData data) { if (data == null) { return; } else { _rollingHistory.Add((double)data.Value); } } } } }