Overall Statistics |
Total Trades 211 Average Win 0.58% Average Loss -0.36% Compounding Annual Return 9.761% Drawdown 2.800% Expectancy -0.203 Net Profit 9.798% Sharpe Ratio 1.447 Probabilistic Sharpe Ratio 68.555% Loss Rate 70% Win Rate 30% Profit-Loss Ratio 1.62 Alpha 0.058 Beta 0.11 Annual Standard Deviation 0.056 Annual Variance 0.003 Information Ratio -1.645 Tracking Error 0.079 Treynor Ratio 0.74 Total Fees $169.50 Estimated Strategy Capacity $0 Lowest Capacity Asset GOOCV WIXFAP3975UU|GOOCV VP83T1ZUHROL |
from scipy.stats import norm from datetime import timedelta class IronCondorAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2017, 2, 1) self.SetEndDate(2018, 2, 1) self.SetCash(100000) self.Debug('Starting Cash: ' + str(self.Portfolio.Cash)) # Add equities self.AddUniverse(self.Universe.DollarVolume.Top(50)) self.equity = [x for x in self.ActiveSecurities] self.equity.append(self.AddEquity("SPY", Resolution.Minute)) self.equity.append(self.AddEquity("EEM", Resolution.Minute)) self.equity.append(self.AddEquity("GOOG", Resolution.Minute)) self.equity.append(self.AddEquity("VCR", Resolution.Minute)) self.equity.append(self.AddEquity("SLY", Resolution.Minute)) self.equity.append(self.AddEquity("XLP", Resolution.Minute)) self.equity.append(self.AddEquity("ARKK", Resolution.Minute)) self.equity.append(self.AddEquity("XLY", Resolution.Minute)) self.equity.append(self.AddEquity("AAPL", Resolution.Minute)) self.stock_list = ["GOOG", "SPY", "VCR", "SLY", "EEM", "XLP", "ARKK", "XLY", "AAPL"] for i in self.equity: i.SetLeverage(1) self.options = [] # Create an array of options for each symbol for x in self.equity: self.options.append(self.AddOption(x.Symbol, Resolution.Minute)) # Create symbol array # self.symbols = [x for x.Symbol in self.options] # Specify universe function for x in self.options: x.SetFilter(self.UniverseFunc) # use the underlying equity GOOG as the benchmark self.SetBenchmark("SPY") self.counter = 0 self.liabilities = 0 self.SetWarmup(1) # Set trading intervals self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen("SPY", 1), self.TradeOptions) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(12, 0), self.TradeOptions) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose("SPY", 10), self.TradeOptions) # What I think is happening is it's sending a ton of data simultaneously def OnData(self, slice): self.most_recent_slice = slice def TradeOptions(self): # If there is undelying assets in portfolio at expiration, liquidate the stocks in order to roll into new contracts # (Fixed) PROBLEM: is datetime retrieving now-now or backtest-now self.Debug(str(x for x in self.Portfolio)) #This is a problem; it needs to be taylored to each option if self.Portfolio.Invested: self.AdjustOptions() if not self.Portfolio.Invested and self.Time.hour != 0 and self.Time.minute != 0: # List of optionchains for each security self.AddToPortfolio() def CloseCondor(self, x): #CCC = Close Condor Called self.Debug("CCC") for symbol in x: self.Liquidate(symbol) def AdjustOptions(self): if self.Portfolio.Invested: # self.Debug("Portfolio.Invested Called " + str(self.Time)) for x in self.condor_list: days_to_expiry = abs(x[0].Expiry - self.Time).days # if this condor expires in 25+ days, leave it condor if days_to_expiry > 25: continue elif days_to_expiry < 3.75: self.CloseCondor(x) # OTM Check otm = True for c in x: if c.Right == 1: #put if c.UnderlyingLastPrice - c.Strike < 0: otm = False else: if c.UnderlyingLastPrice - c.Strike > 0: otm = False # If Condor is in the head region, close if days_to_expiry <= 25 and otm: self.CloseCondor(x) #Clean out actual stocks for ticker in self.stock_list: self.SetHoldings(ticker, 0) self.AddToPortfolio() def AddToPortfolio(self): self.condor_list = [] for i in self.most_recent_slice.OptionChains: # self.Debug("AddToPortfolio Called") # self.Debug("Iteration Number " + str(self.counter)) chain = i.Value contract_list = [x for x in chain] # if there is no optionchain or no contracts in this optionchain, pass the instance if (self.most_recent_slice.OptionChains.Count == 0) or (len(contract_list) == 0): continue # sorted the optionchain by expiration date and choose the furthest date expiry = sorted(chain,key = lambda x: x.Expiry)[-1].Expiry # filter the call and put options from the contracts put = [i for i in chain if i.Expiry == expiry and i.Right == 1] self.Debug("Puts: " + str(x.Strike for x in put)) if len(put) > 2: put_contracts = sorted(put,key = lambda x: x.Strike) else: continue highest_put_strike = put_contracts[len(put_contracts) - 1].Strike call = [i for i in chain if i.Expiry == expiry and i.Right == 0 and i.Strike > put[0].UnderlyingLastPrice] if len(call) > 2: call_contracts = sorted(call,key = lambda x: x.Strike) else: continue # sorted the contracts according to their strike prices self.Debug(put_contracts[len(put_contracts) - 1].UnderlyingSymbol.Value + ' ' + str(len(put_contracts)) + ' ' + str(len(call_contracts))) # self.Debug('price= ' + str(put_contracts[0].UnderlyingLastPrice) + 'PUTS: ' + ' '.join(str([x.Strike for x in put_contracts]))) put_contracts = [i for i in put if i.Strike < i.UnderlyingLastPrice] # self.Debug('CALLS: ' + ' '.join([x.Strike for x in call_contracts])) put_contracts = sorted(put,key = lambda x: x.Strike) if len(call_contracts) == 0 or len(put_contracts) == 0 : continue otm_put_lower = put_contracts[0] otm_put = put_contracts[len(put_contracts) - 1] try: otm_call = call_contracts[-10] except IndexError: otm_call = call_contracts[-1 * len(call_contracts)] self.Debug("otm_call Index Error") try: otm_call_higher = call_contracts[-1] except IndexError: otm_call_higher = call_contracts[1] self.Debug("otm_call_higher Index Error") self.trade_contracts = [otm_call.Symbol,otm_call_higher.Symbol,otm_put.Symbol,otm_put_lower.Symbol] self.condor_list.append([otm_call, otm_call_higher, otm_put, otm_put_lower]) self.Debug('Lower Put ' + str(otm_put_lower.Strike) + 'Higher Put ' + str(otm_put.Strike) + 'Lower Call: ' + str(otm_call.Strike) + 'Higher Call' + str(otm_call_higher.Strike)) expiry = otm_call_higher.Expiry # if there is no securities in portfolio, trade the options totalPrice = sum([x.AskPrice for x in [otm_call_higher, otm_put_lower]]) - otm_put.BidPrice - otm_call.BidPrice + otm_call.UnderlyingLastPrice margin = self.Portfolio.GetMarginRemaining(otm_put_lower.UnderlyingSymbol, OrderDirection.Buy) if margin > totalPrice * 4: self.Debug("Passed Enough Cash Test. Cash: " + str(self.Portfolio.Cash)) self.Debug("Option Total Pricetag: " + str(totalPrice)) self.Buy(otm_put_lower.Symbol ,1) self.Sell(otm_put.Symbol ,1) self.Sell(otm_call.Symbol ,1) self.Buy(otm_call_higher.Symbol ,1) # Fix, this doesn't include premium self.counter += 1 self.liabilities += 100 * otm_call.UnderlyingLastPrice - sum([x.AskPrice for x in [otm_call_higher, otm_put_lower]]) - otm_put.BidPrice - otm_call.BidPrice def ExpectedValue(x): # What will q be? 100? (that is assumed here) mu = x[0].UnderlyingLastPrice sigma = x[0].ImpliedVolatility C = x[1].BidPrice + x[2].BidPrice - x[0].BidPrice - x[3].BidPrice y = [] y[0] = norm.cdf(x[0].Strike, mu, sigma) * -100 * (x[1].Strike - x[0].Strike) Ptwo = norm.cdf(x[1].Strike, mu, sigma) - norm.cdf(x[0].Strike, mu, sigma) y[1] = Ptwo * -100 y[2] = 2 y[3] = 3 y[4] = 4 def OnOrderEvent(self, orderEvent): self.Debug(str(orderEvent)) def UniverseFunc(self, universe): return universe.IncludeWeeklys().Strikes(-15, 15).Expiration(timedelta(35), timedelta(50))