Overall Statistics |
Total Orders 2197 Average Win 0.01% Average Loss -0.01% Compounding Annual Return -12.322% Drawdown 9.500% Expectancy -0.374 Start Equity 100000.00 End Equity 96776.09 Net Profit -3.224% Sharpe Ratio -1.097 Sortino Ratio -1.32 Probabilistic Sharpe Ratio 16.152% Loss Rate 61% Win Rate 39% Profit-Loss Ratio 0.59 Alpha -0.376 Beta 0.891 Annual Standard Deviation 0.124 Annual Variance 0.015 Information Ratio -4.284 Tracking Error 0.095 Treynor Ratio -0.153 Total Fees $2059.43 Estimated Strategy Capacity $8700000.00 Lowest Capacity Asset CRBP VZR6X1TTY8H1 Portfolio Turnover 93.59% |
# region imports from AlgorithmImports import * # endregion # Your New Python File class AssetArbitrageStrategy: def __init__(self, algorithm, symbol): self.algorithm = algorithm self.symbol = symbol self.long_trade_size = 0.05 # 5% of the portfolio for long trades self.short_trade_size = 0.03 # 3% of the portfolio for short trades self.long_stop_loss = 0.05 # 5% stop-loss for long trades self.short_stop_loss = 0.03 # 3% stop-loss for short trades self.max_portfolio_exposure = 0.80 # Maximum 80% portfolio exposure def Execute(self, indicators): contrarian_bands = indicators["contrarian_bands"] rsi = indicators["rsi"] trend = indicators["trend"] if not contrarian_bands.HasSignal() or not rsi.HasSignal(): return price = self.algorithm.Securities[self.symbol].Price holdings = self.algorithm.Portfolio[self.symbol].Quantity average_price = self.algorithm.Portfolio[self.symbol].AveragePrice if price is None or price <= 0: self.algorithm.Debug(f"Skipping {self.symbol}: Invalid price {price}") return # Portfolio Exposure Check portfolio_exposure = sum([holding.HoldingsValue for holding in self.algorithm.Portfolio.Values]) / self.algorithm.Portfolio.TotalPortfolioValue if portfolio_exposure > self.max_portfolio_exposure: self.algorithm.Debug(f"Skipping trade for {self.symbol}: Portfolio exposure exceeds limit ({portfolio_exposure:.2%})") return # Long Entry if holdings == 0 and price < contrarian_bands.bbands.LowerBand.Current.Value and rsi.rsi.Current.Value < 30 and trend.IsUptrend(): self.algorithm.SetHoldings(self.symbol, self.long_trade_size) # Short Entry elif holdings == 0 and price > contrarian_bands.bbands.UpperBand.Current.Value and rsi.rsi.Current.Value > 70 and trend.IsDowntrend(): self.algorithm.SetHoldings(self.symbol, -self.short_trade_size) # Stop-Loss for Long Positions if holdings > 0 and price < average_price * (1 - self.long_stop_loss): self.algorithm.Debug(f"Stop-loss triggered for long {self.symbol} at price {price}") self.algorithm.Liquidate(self.symbol) # Stop-Loss for Short Positions if holdings < 0 and price > average_price * (1 + self.short_stop_loss): self.algorithm.Debug(f"Stop-loss triggered for short {self.symbol} at price {price}") self.algorithm.Liquidate(self.symbol) # Long Exit if holdings > 0 and price >= contrarian_bands.bbands.MiddleBand.Current.Value: self.algorithm.Liquidate(self.symbol) # Short Exit if holdings < 0 and price <= contrarian_bands.bbands.MiddleBand.Current.Value: self.algorithm.Liquidate(self.symbol)
# region imports from AlgorithmImports import * # endregion # Your New Python File class CustomBollingerBands: def __init__(self, algorithm, symbol, period=20, deviations=2): self.algorithm = algorithm self.symbol = symbol self.bbands = algorithm.BB(symbol, period, deviations, MovingAverageType.Simple, Resolution.Daily) def Update(self, data): if self.symbol in data and data[self.symbol] is not None: self.bbands.Update(data[self.symbol].EndTime, data[self.symbol].Close) def HasSignal(self): return self.bbands.IsReady class RSIIndicator: def __init__(self, algorithm, symbol, period=14): self.algorithm = algorithm self.symbol = symbol self.rsi = algorithm.RSI(symbol, period, MovingAverageType.Simple, Resolution.Daily) def Update(self, data): if self.symbol in data and data[self.symbol] is not None: self.rsi.Update(data[self.symbol].EndTime, data[self.symbol].Close) def HasSignal(self): return self.rsi.IsReady class HistoricalVolatility: def __init__(self, algorithm, symbol, period=20): self.algorithm = algorithm self.symbol = symbol self.returns = RollingWindow[float](period) def Update(self, data): if self.symbol in data and data[self.symbol] is not None: price = data[self.symbol].Close if self.returns.Count > 0 and self.returns[0] != 0: self.returns.Add(np.log(price / self.returns[0])) else: self.returns.Add(0) def GetVolatility(self): if self.returns.IsReady: return np.std(list(self.returns)) return None class TrendFilter: def __init__(self, algorithm, symbol, sma_period=50): self.algorithm = algorithm self.symbol = symbol self.sma = algorithm.SMA(symbol, sma_period, Resolution.Daily) def Update(self, data): if self.symbol in data and data[self.symbol] is not None: self.sma.Update(data[self.symbol].EndTime, data[self.symbol].Close) def IsUptrend(self): if self.sma.IsReady: price = self.algorithm.Securities[self.symbol].Price return price > self.sma.Current.Value return False def IsDowntrend(self): if self.sma.IsReady: price = self.algorithm.Securities[self.symbol].Price return price < self.sma.Current.Value return False
from AlgorithmImports import * from Indicators import CustomBollingerBands, RSIIndicator, HistoricalVolatility, TrendFilter from AssetStrategy import AssetArbitrageStrategy class VolatilityArbitrage(QCAlgorithm): def Initialize(self): self.SetStartDate(2024, 1, 1) self.SetEndDate(2024, 3, 31) self.SetCash(100000) # Add cryptocurrencies self.crypto_symbols = ["BTCUSD", "ETHUSD", "SOLUSD"] for crypto in self.crypto_symbols: self.AddCrypto(crypto, Resolution.Daily) # Universe selection for 100 stocks self.AddUniverse(self.CoarseSelectionFunction) # Extended warm-up period for better historical volatility data self.SetWarmUp(timedelta(days=60)) self.symbol_data = {} def CoarseSelectionFunction(self, coarse): # Select liquid equities with price > $20 and sort by dollar volume in descending order filtered = [x for x in coarse if x.Price > 20 and x.DollarVolume > 1e7] sorted_by_volume = sorted(filtered, key=lambda x: x.DollarVolume, reverse=True) selected = [x.Symbol for x in sorted_by_volume[:100]] # Top 100 stocks return selected + self.crypto_symbols # Add cryptos to the universe def OnSecuritiesChanged(self, changes): for added in changes.AddedSecurities: symbol = added.Symbol if symbol not in self.symbol_data: self.symbol_data[symbol] = { "indicators": { "contrarian_bands": CustomBollingerBands(self, symbol), "rsi": RSIIndicator(self, symbol), "hist_vol": HistoricalVolatility(self, symbol), "trend": TrendFilter(self, symbol) }, "strategy": AssetArbitrageStrategy(self, symbol) } for removed in changes.RemovedSecurities: symbol = removed.Symbol if symbol in self.symbol_data: del self.symbol_data[symbol] def OnData(self, data): if self.IsWarmingUp: return for symbol, data_set in self.symbol_data.items(): if symbol in data: indicators = data_set["indicators"] indicators["contrarian_bands"].Update(data) indicators["rsi"].Update(data) indicators["hist_vol"].Update(data) indicators["trend"].Update(data) data_set["strategy"].Execute(indicators)