Overall Statistics |
Total Trades 3 Average Win 3.21% Average Loss 0% Compounding Annual Return 1.249% Drawdown 20.700% Expectancy 0 Net Profit 2.625% Sharpe Ratio 0.167 Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.132 Beta -5.634 Annual Standard Deviation 0.112 Annual Variance 0.013 Information Ratio -0.012 Tracking Error 0.112 Treynor Ratio -0.003 Total Fees $58.52 |
import numpy as np import datetime class SellInMayBuyInNov(QCAlgorithm): def Initialize(self): self.SetStartDate(2017,1, 1) #Set Start Date self.SetEndDate(2019,2,1) #Set End Date self.SetCash(1000000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.AddEquity("SPY", Resolution.Daily,Leverage=1,fillDataForward = True, extendedMarketHours = False) self.SetRunMode(RunMode.Series) def OnData(self, data): if self.Time.month == 5: if self.Portfolio.Invested: self.Liquidate() self.Debug("Sell In May " + str(self.Time.year)) elif self.Time.month == 11: if not self.Portfolio.Invested: self.SetHoldings("SPY", 1) self.Debug("Buy In Nov " + str(self.Time.year))