Overall Statistics |
Total Trades 1395 Average Win 4.06% Average Loss -0.48% Compounding Annual Return 47.511% Drawdown 18.800% Expectancy 1.107 Net Profit 4026.749% Sharpe Ratio 1.492 Probabilistic Sharpe Ratio 80.983% Loss Rate 78% Win Rate 22% Profit-Loss Ratio 8.46 Alpha 0.246 Beta 1.318 Annual Standard Deviation 0.292 Annual Variance 0.085 Information Ratio 1.312 Tracking Error 0.222 Treynor Ratio 0.33 Total Fees $104380.16 Estimated Strategy Capacity $23000000.00 Lowest Capacity Asset TMF UBTUG7D0B7TX |
## T. Smith - Reductionist ROC comparison XLI-XLU - Faster trading - Long SPY only - Sharpe >1 since 1999 - Inspired by Vladimir & Peter Guenther import numpy as np class DualMomentumInOut(QCAlgorithm): def Initialize(self): self.SetStartDate(2012, 1, 1) self.cap = 100000 self.RETURN = 10 self.STK = self.AddEquity('TQQQ', Resolution.Minute).Symbol self.HDG_1 = self.AddEquity('TMF', Resolution.Minute).Symbol self.SVXY = self.AddEquity('SVXY',Resolution.Minute).Symbol self.XLI = self.AddEquity('XLI', Resolution.Hour).Symbol self.XLU = self.AddEquity('XLU', Resolution.Hour).Symbol self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol self.pairs = [self.XLI, self.XLU] self.wt = {} self.real_wt = {} self.mkt = [] self.SetWarmUp(timedelta(350)) self.AddEquity('SVXY',Resolution.Minute) res = Resolution.Daily self.uvxy = self.AddEquity('UVXY',res).Symbol self.bb = self.BB(self.uvxy,10,2,res) self.sma = self.SMA(self.uvxy,4,res) self.rc = self.RC(self.uvxy,6,0.3,res) self.trigger=False self.buy=False self.hold=False self.sell=False self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(TimeSpan.FromMinutes(240)), self.daily_check) symbols = self.pairs for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(hours=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, self.RETURN + 1, Resolution.Hour) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(self.RETURN + 1):] def OnData(self, data): #vix check if self.bb.IsReady and data.ContainsKey(self.uvxy) and self.sma.IsReady: vix=data[self.uvxy].Close if self.rc.UpperChannel.Current.Value<vix: self.trigger=True if self.trigger and self.sma.Current.Value>vix: self.buy=True if self.hold and (vix<(self.bb.MiddleBand.Current.Value-self.bb.StandardDeviation.Current.Value)): self.sell=True if self.buy and data.ContainsKey('SVXY'): self.wt[self.SVXY] = 0.2 self.wt[self.uvxy] = 0 self.trigger=False self.buy=False self.hold=True if data.ContainsKey('SVXY') and (self.sell or self.Portfolio['SVXY'].UnrealizedProfitPercent<-0.04): self.wt[self.SVXY] = 0 self.wt[self.uvxy] = 0.2 self.hold=False self.sell=False self.trade() def daily_check(self): #industrial utilities check r = self.history.pct_change(self.RETURN).iloc[-1] if (r[self.XLI] < r[self.XLU]): self.wt[self.STK] = 0.2 self.wt[self.HDG_1] = 0.2 self.trade() else: self.wt[self.STK] = 0.5 self.wt[self.HDG_1] = 0.2 self.trade() def trade(self): for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def OnEndOfDay(self): mkt_price = self.Securities[self.MKT].Close self.mkt.append(mkt_price) mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap self.Plot('Strategy Equity', 'SPY', mkt_perf) for sec, weight in self.wt.items(): self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4) self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))