Overall Statistics |
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -6.143 Tracking Error 0.037 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
# region imports from AlgorithmImports import * # endregion class SquareBrownJellyfish(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 2, 11) self.SetEndDate(2021, 2, 16) self.SetCash(100000) self.AddUniverse(self.MyCoarseFilterFunction) self.volumeBySymbol = {} def MyCoarseFilterFunction(self, coarse): filtered = [ x for x in coarse if x.price > 20 and x.volume > 1000000 ] for x in filtered: if x.Symbol not in self.volumeBySymbol: self.volumeBySymbol[x.Symbol] = SymbolData(x.Symbol, self) self.volumeBySymbol[x.Symbol].Update(x.EndTime, x.Volume) sortBySMAVolume = sorted(self.volumeBySymbol.items(), key=lambda x: x[1].sma.Current.Value, reverse=True)[:50] symbols = [x[0] for x in sortBySMAVolume] for symbol in symbols: self.debug(symbol) return symbols class SymbolData: def __init__(self,symbol,algo): self.algo = algo self.symbol = symbol self.sma = SimpleMovingAverage(30) # self.high = self.MAX(symbol, 253, Resolution.Daily, Field.High) # self.low = self.MIN(symbol, 253, Resolution.Daily, Field.Low) history = algo.History(symbol,30,Resolution.Daily) if not history.empty: for time,row in history.loc[symbol].iterrows(): self.sma.Update(time,row['volume']) def Update(self,time,vol): self.sma.Update(time,vol)