Overall Statistics |
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return -31.359% Drawdown 6.500% Expectancy 0 Net Profit -3.012% Sharpe Ratio -1.169 Probabilistic Sharpe Ratio 21.765% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.186 Beta 1.718 Annual Standard Deviation 0.177 Annual Variance 0.031 Information Ratio -1.298 Tracking Error 0.15 Treynor Ratio -0.12 Total Fees $1.00 Estimated Strategy Capacity $17000000.00 Lowest Capacity Asset AMZN R735QTJ8XC9X |
# region imports from AlgorithmImports import * # endregion # QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### <summary> ### Demonstration of the Option Chain Provider -- a much faster mechanism for manually specifying the option contracts you'd like to recieve ### data for and manually subscribing to them. ### </summary> ### <meta name="tag" content="strategy example" /> ### <meta name="tag" content="options" /> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="selecting options" /> ### <meta name="tag" content="manual selection" /> class BootCampTask(QCAlgorithm): def Initialize(self): self.SetStartDate(2017, 6, 1) self.SetEndDate(2017, 7, 1) self.SetCash(100000) self.equity = self.AddEquity("AMZN", Resolution.Minute) self.equity.SetDataNormalizationMode(DataNormalizationMode.Raw) def OnData(self,data): ''' OptionChainProvider gets a list of option contracts for an underlying symbol at requested date. Then you can manually filter the contract list returned by GetOptionContractList. The manual filtering will be limited to the information included in the Symbol (strike, expiration, type, style) and/or prices from a History call ''' if not self.Portfolio.Invested: contracts = self.OptionChainProvider.GetOptionContractList(self.equity.Symbol, data.Time) self.underlyingPrice = self.Securities[self.equity.Symbol].Price strike_dist = [i for i in contracts if i.ID.StrikePrice > self.underlyingPrice - (self.underlyingPrice * 0.1) and i.ID.StrikePrice < self.underlyingPrice + (self.underlyingPrice * 0.1)] if len(strike_dist) > 0: contract = strike_dist[0] # Before placing the order, use AddOptionContract() to subscribe the requested contract symbol self.Plot("Test", "Current Price", self.underlyingPrice) self.Plot("Test", "Max Strike", self.underlyingPrice + (self.underlyingPrice * 0.1)) self.Plot("Test", "Min Strike", self.underlyingPrice - (self.underlyingPrice * 0.1)) self.Plot("Test", "Strike Price", contract.ID.StrikePrice) self.AddOptionContract(contract, Resolution.Minute) self.MarketOrder(contract, -1) self.MarketOrder(self.equity.Symbol, 100)