Overall Statistics
Total Trades
9
Average Win
0%
Average Loss
0%
Compounding Annual Return
-1.277%
Drawdown
0.100%
Expectancy
0
Net Profit
-0.060%
Sharpe Ratio
-4.554
Probabilistic Sharpe Ratio
0.742%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
-0.012
Beta
0.012
Annual Standard Deviation
0.003
Annual Variance
0
Information Ratio
0.251
Tracking Error
0.155
Treynor Ratio
-1.018
Total Fees
$6.00
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")

from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Python import PythonQuandl
from QuantConnect.Securities.Equity import EquityExchange

from datetime import datetime, timedelta
import numpy as np
import pandas as pd
from scipy.stats import norm

#from QuantConnect.Data.Custom.Tiingo import *
from QuantConnect.Python import PythonQuandl # quandl data not CLOSE
from QuantConnect.Python import PythonData # custom data
from QuantConnect.Data import SubscriptionDataSource

# Risk Premia RW algorithm
class RPRWAlgorithm(QCAlgorithm):

    def Initialize(self):

        # Initial settings
        self.SetStartDate(2015, 12, 18)
        self.SetEndDate(2020, 8, 30)
        self.SetCash(10000)
        self.MarketAsset = "SPY"
        self.WarmupTime = 310
        self.Window = 300

        #parameters
        self.vol_lookback = 90
        self.corr_lookback = 120
        self.formation_periods = np.array([3, 6, 9, 12])*22
        self.z_score_cutoff = 0
        self.momo_multiplier = 0.1

        # these are the growth symbols we'll rotate through
        #self.GrowthSymbols = ["VTI",  # Vanguard Total Stock Market ETF
        #                      "VEA",  # VEA - Vanguard FTSE Developed Markets
        #                     "PUTW", # WisdomTree CBOE S&P 500 PutWrite Strategy Fund
        #                     "TLT",  # iShares 20+ Year Treasury Bond ETF
        #                     "UST",  # ProShares Ultra 7-10 Year Treasury
        #                     "VWO",  # iShares MSCI Emerging Markets Indx
        #                     "VNQI", # VANGUARD INTL E/GLB EX-US RL EST IX
                              # "GLD",  #GLD
        #                     "GBTC", #BTC
        #                     "EMB"]  # iShares J.P. Morgan USD Emerging Markets Bond ETF"
        # these are the safety symbols we go to when things are looking bad for growth
        # this part is not supposed to work
        # I don't know how to open these assets
        #self.SafetySymbols =  "PUTW", # WisdomTree CBOE S&P 500 PutWrite Strategy Fund
        #                      "EMB"]  # iShares J.P. Morgan USD Emerging Markets Bond ETF"
        
        self.GrowthSymbols = [self.AddData(GoldPhys, "IGLN.L", Resolution.Daily).Symbol,
                              self.AddData(Treas20, "IDTL.L", Resolution.Daily).Symbol,
                              self.AddData(VanSPY, "VDNR.L", Resolution.Daily).Symbol,
                              "VTI",
                              "VEA",
                              "PUTW",
                              "TLT",
                              "UST",
                              "EMB",
                              "SPY"
                             ]

        #Tiingo.SetAuthCode("ENTER_YOUR_KEY_HERE")
        #self.AddData(TiingoDailyData, "PUTW", Resolution.Daily)
        #self.AddData(TiingoDailyData, "EMB", Resolution.Daily)

        #self.ticker = "PUTW"
        #self.symbol = self.AddData(TiingoDailyData, self.ticker, Resolution.Daily).Symbol
        #self.AddEquity("SPY", Resolution.Daily)

        if self.LiveMode:
            self.Debug("Trading Live!")

        self.SafetySymbols = []


        # all symbols set
        self.AllSymbols = list(set(self.GrowthSymbols) | set(self.SafetySymbols))

        # open equity symbols
        for ticker in self.GrowthSymbols:
            #self.AddData(self.GrowthSymbols, Resolution.Daily)
            self.AddEquity(ticker, Resolution.Daily)

        # this doesn't do anything at the moment. We need to work out how to properly handles these assets
        #for symbol in self.SafetySymbols:
        #    self.AddOption(symbol, Resolution.Daily)

        # wait for warming up
        self.SetWarmUp(self.WarmupTime)
        # schedule the trading function
        self.Schedule.On(self.DateRules.MonthStart(self.MarketAsset), self.TimeRules.AfterMarketOpen(self.MarketAsset, 120), Action(self.RebalanceAndTrade))
        # schedule the Portfolio Statistics
        self.Schedule.On(self.DateRules.EveryDay(self.MarketAsset), self.TimeRules.AfterMarketOpen(self.MarketAsset, 10), Action(self.Perfomance))

    def OnEndOfDay(self, ticker):
        self.Plot(str(ticker),'EOD',self.Securities[ticker].Price)

    def OnData(self, slice):
        if self.LiveMode: self.Debug("Running algorithm!!")

        # Make sure all the data we need is in place
        if self.IsWarmingUp: return

        if not slice.ContainsKey("PUTW"):
            self.Debug("PUTW not found!!")
            return
        if not slice.ContainsKey("EMB"):
            self.Debug("EMB not found!!")
            return

        if self.LiveMode: self.Debug("Warm Up Complete Deciding..")

    def Perfomance(self):
        slices = self.History(self.AllSymbols, self.Window, Resolution.Daily)
        slices_df = pd.pivot_table(slices, values = 'close', index='time', columns = 'symbol').reset_index()
        slices_df = slices_df.drop(columns=['time'])
        #slices_df.columns = [SymbolCache.GetTicker(x) for x in slices_df.columns]
        returns = slices_df.pct_change()





    # trading function
    def RebalanceAndTrade(self):

        slices = self.History(self.AllSymbols, self.Window, Resolution.Daily)
        slices_df = pd.pivot_table(slices, values = 'close', index='time', columns = 'symbol').reset_index()
        slices_df = slices_df.drop(columns=['time'])
        #slices_df.columns = [SymbolCache.GetTicker(x) for x in slices_df.columns]
        returns = slices_df.pct_change()

        '''
        Daily Perfomance Report
        '''
        '''
        all_symbols = [ x.Value for x in self.Portfolio.Keys ]
        self.Notify.Email("Your_email_here", "Current Time" + str(self.Time) ,
          "\n Total Portfolio Value is: " + str(self.Portfolio.TotalHoldingsValue)
        + "\n Total Profit:"+ str(self.Portfolio.TotalProfit)
        + "\n Total Unrealised Profit/Loss:"+ str(self.Portfolio.TotalUnrealizedProfit)
        + "\n Total Cash:"+ str(self.Portfolio.Cash)
        + "\n Unrealised Profit/Loss VTI:"+ str(self.Portfolio["VTI"].UnrealizedProfit)
        + "\n Total Quantity VTI:"+ str(self.Portfolio["VTI"].Quantity)
        + "\n Current Price VTI:"+ str(self.Portfolio["VTI"].Price)
        + "\n Unrealised Profit/Loss VEA:"+ str(self.Portfolio["VEA"].UnrealizedProfit)
        + "\n Total Quantity VEA:"+ str(self.Portfolio["VEA"].Quantity)
        + "\n Current Price VEA:"+ str(self.Portfolio["VEA"].Price)
        + "\n Unrealised Profit/Loss PUTW:"+ str(self.Portfolio["PUTW"].UnrealizedProfit)
        + "\n Total Quantity PUTW:"+ str(self.Portfolio["PUTW"].Quantity)
        + "\n Current Price PUTW:"+ str(self.Portfolio["PUTW"].Price)
        + "\n Unrealised Profit/Loss TLT:"+ str(self.Portfolio["TLT"].UnrealizedProfit)
        + "\n Total Quantity TLT:"+ str(self.Portfolio["TLT"].Quantity)
        + "\n Current Price TLT:"+ str(self.Portfolio["TLT"].Price)
        + "\n Unrealised Profit/Loss UST:"+ str(self.Portfolio["UST"].UnrealizedProfit)
        + "\n Total Quantity UST:"+ str(self.Portfolio["UST"].Quantity)
        + "\n Current Price UST:"+ str(self.Portfolio["UST"].Price)
        + "\n Unrealised Profit/Loss VWO:"+ str(self.Portfolio["VWO"].UnrealizedProfit)
        + "\n Total Quantity VWO:"+ str(self.Portfolio["VWO"].Quantity)
        + "\n Current Price VWO:"+ str(self.Portfolio["VWO"].Price)
        + "\n Unrealised Profit/Loss VNQI:"+ str(self.Portfolio["VNQI"].UnrealizedProfit)
        + "\n Total Quantity VNQI:"+ str(self.Portfolio["VNQI"].Quantity)
        + "\n Current Price VNQI:"+ str(self.Portfolio["VNQI"].Price)
        + "\n Unrealised Profit/Loss EMB:"+ str(self.Portfolio["EMB"].UnrealizedProfit)
        + "\n Total Quantity EMB:"+ str(self.Portfolio["EMB"].Quantity)
        + "\n Current Price EMB:"+ str(self.Portfolio["EMB"].Price)

        )
        # skipping if it is warming up
        '''
        if self.IsWarmingUp: return
        #if self.Time.day != 6: return


        # creating the pandas DataFrame
        '''
        slices = self.History(self.AllSymbols, self.Window, Resolution.Daily)
        slices_df = pd.pivot_table(slices, values = 'close', index='time', columns = 'symbol').reset_index()
        slices_df = slices_df.drop(columns=['time'])
        slices_df.columns = [SymbolCache.GetTicker(x) for x in slices_df.columns]
        returns = slices_df.pct_change()
        '''

        # for debugging
        #self.Debug(self.Time)
        #self.Debug(returns.shape)

        # weights calculation
        vol_weights = self.get_srp_weights(returns, self.vol_lookback)
        cor_adjust = self.get_cor_adjustments(returns, self.corr_lookback)
        cor_adjust_weights = self.adjust_weights(vol_weights, cor_adjust, shrinkage=1)
        momo_adjusted_weights = self.get_momo_adjusted_weights(returns, cor_adjust_weights, self.formation_periods, self.z_score_cutoff, self.momo_multiplier)
        # the following should contain asset EMB instead of EEM
        capped_weights = self.cap_allocation_and_rescale(momo_adjusted_weights, ticker="EMB", cap=0.15)
        # the following should VTI and PUTW but I don't know how to handle yet
        final_weights = self.split_allocation(capped_weights, "VTI", "PUTW", ratio=0.5)
        self.Debug(final_weights.shape)
        self.Debug(self.Time)
        self.Debug(final_weights)
        # allocating assets
        for i in range(len(final_weights)):
            self.Log("{} : asset {}, allocating {}".format(self.Time, slices_df.columns[i], final_weights[i]))
            self.SetHoldings(slices_df.columns[i], final_weights[i])


    def get_srp_weights(self, returns, vol_lookback):
        """
        returns current srp werights given a pandas DataFrame of returns and a vol_lookback period
        """
        n_assets = len(returns.columns)
        vols = returns.iloc[-vol_lookback:, :].apply(lambda x: np.std(x)*np.sqrt(252), axis=0)
        raw_weights = 1/vols
        weights = raw_weights/np.sum(raw_weights)

        return weights

    def get_cor_adjustments(self, returns, corr_lookback):
        """
        returns current correlation adjustments given a pandas DataFrame of returns and a corr_lookback period
        """
        cor = returns.iloc[-corr_lookback:, :].corr()
        pairwise_ave_cor = cor.mean(axis=1)
        zscore_pairwise_ave_cor = (pairwise_ave_cor - pairwise_ave_cor.mean())/pairwise_ave_cor.std()
        gauss_scale = 1 - norm.cdf(zscore_pairwise_ave_cor, 0, 1)
        raw_adjustments = gauss_scale/gauss_scale.sum()
        norm_adjustments = raw_adjustments - 1./len(returns.columns)

        return norm_adjustments

    def adjust_weights(self, vol_weights, corr_adjustments, shrinkage):
        raw_weights = vol_weights * (1 +corr_adjustments * shrinkage)
        adj_weights = raw_weights/raw_weights.sum()

        return adj_weights


    def get_momo_adjustments(self, returns, formation_period):
        """
        returns current cross-sectional zscore of total return momentum
        given a pandas DataFrame of returns and formation_period
        """
        synth_prices = (returns+1).cumprod()
        roc = (synth_prices.iloc[-1,:]/synth_prices.iloc[-formation_period-1,:]-1)
        momo_adjustments = (roc - roc.mean())/roc.std()

        return momo_adjustments

    def get_sma_slope_adjustments(self, returns, formation_period):
        """
        returns current cross-sectional zscore of slope of moving average
        given a pandes DataFrame of returns and a formation_period
        """
        synth_prices = (returns+1).cumprod()
        sma = synth_prices.iloc[-formation_period-1:,:].rolling(formation_period).mean()
        sma_slope = (sma.iloc[-1,:]/sma.iloc[-2,:])-1
        momo_adjustments = (sma_slope - sma_slope.mean())/sma_slope.std()

        return momo_adjustments

    def adjust_momo_weights(self, base_weights, momo_adjustments, z_score_cutoff, multiplier):
        raw_weights = base_weights * (1 + ((momo_adjustments >= z_score_cutoff) * multiplier))
        adj_weights = raw_weights/raw_weights.sum()

        return adj_weights

    def get_momo_adjusted_weights(self, returns, base_weights, formation_periods, z_score_cutoff, multiplier):
        """
        returns current momentum-adjusted weights given a pandes DataFrame of returns and a formation_period
        """
        momo_weights = base_weights

        for period in formation_periods :
            momo_adjustments = self.get_momo_adjustments(returns, period)
            momo_weights = self.adjust_momo_weights(momo_weights, momo_adjustments, z_score_cutoff, multiplier)

        for period in formation_periods :
            momo_adjustments = self.get_sma_slope_adjustments(returns, period)
            momo_weights = self.adjust_momo_weights(momo_weights, momo_adjustments, z_score_cutoff, multiplier)

        return momo_weights

    def cap_allocation_and_rescale(self, weights, ticker, cap=0.15):
        """
        cap the allocation into ticker and rescale remaining weights
        """
        if weights[ticker] > cap:
            weights = (1-cap)*weights.drop(ticker)/weights.drop(ticker).sum()
            weights[ticker] = cap

        return weights

    def split_allocation(self, weights, ticker, split_ticker, ratio=0.5):
        """
        split the allocation into ticker into ticker and split_ticker according to ratio
        """
        weights[split_ticker] = (1-ratio)*weights[ticker]
        weights[ticker] = ratio*weights[ticker]

        #global tradeable_universe
        #if split_ticker not in tradeable_universe:
        #    tradeable_universe.append(split_ticker)

        return weights
        
class GoldPhys(PythonData):
    '''IGLN.L Custom Data Class'''
    def GetSource(self, config, date, datafeed):
        #source = "https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=IGLN.L&outputsize=full&apikey=W2M5JSET6CQ4JCI1"
        #return SubscriptionDataSource(source, SubscriptionTransportMedium.Rest);
        return SubscriptionDataSource("https://www.dropbox.com/s/s9a65ecegg8kvu0/IGLN.csv?dl=1", SubscriptionTransportMedium.RemoteFile)


    def Reader(self, config, line, date, datafeed):
        if not (line.strip() and line[0].isdigit()): return None

        # New GoldPhys object
        gold = GoldPhys()
        gold.Symbol = config.Symbol

        try:
            # Example File Format:
            # Date,       Open       High        Low       Close     Volume
            # 2011-09-13  7792.9    7799.9     7722.65    7748.7    116534670
            data = line.split(',')
            gold.Time = datetime.strptime(data[0], "%Y-%m-%d")
            gold.Value = data[4]
            gold["open"] = float(data[1])
            gold["high"] = float(data[2])
            gold["low"] = float(data[3])
            gold["close"] = float(data[4])



        except ValueError:
                # Do nothing
                return None

        return gold

class Treas20(PythonData):
    '''IDTL.L Custom Data Class'''
    def GetSource(self, config, date, datafeed):
        return SubscriptionDataSource("https://www.dropbox.com/s/ac9sc2e6px754k5/IDTL.csv?dl=1", SubscriptionTransportMedium.RemoteFile)


    def Reader(self, config, line, date, datafeed):
        if not (line.strip() and line[0].isdigit()): return None

        # New Treas20 object
        bond = Treas20()
        bond.Symbol = config.Symbol

        try:
            # Example File Format:
            # Date,       Open       High        Low       Close     Volume
            # 2011-09-13  7792.9    7799.9     7722.65    7748.7    116534670
            data = line.split(',')
            bond.Time = datetime.strptime(data[0], "%Y-%m-%d")
            bond.Value = data[4]
            bond["open"] = float(data[1])
            bond["high"] = float(data[2])
            bond["low"] = float(data[3])
            bond["close"] = float(data[4])




        except ValueError:
                # Do nothing
                return None

        return bond

class VanSPY(PythonData):
    '''VDNR.L Custom Data Class'''
    def GetSource(self, config, date, datafeed):
        return SubscriptionDataSource("https://www.dropbox.com/s/pqwv2psx3qeysl1/VDNR.csv?dl=1", SubscriptionTransportMedium.RemoteFile)

    def Reader(self, config, line, date, datafeed):
        if not (line.strip() and line[0].isdigit()): return None

        # New VanSPY object
        vSpy = VanSPY()
        vSpy.Symbol = config.Symbol

        try:
            # Example File Format:
            # Date,       Open       High        Low       Close     Volume
            # 2011-09-13  7792.9    7799.9     7722.65    7748.7    116534670
            data = line.split(',')
            vSpy.Time = datetime.strptime(data[0], "%Y-%m-%d")
            vSpy.Value = data[4]
            vSpy["open"] = float(data[1])
            vSpy["high"] = float(data[2])
            vSpy["low"] = float(data[3])
            vSpy["close"] = float(data[4])




        except ValueError:
                # Do nothing
                return None

        return vSpy