Overall Statistics |
Total Trades 4303 Average Win 0.19% Average Loss -0.19% Compounding Annual Return -4.139% Drawdown 26.600% Expectancy -0.063 Net Profit -11.941% Sharpe Ratio -0.233 Loss Rate 53% Win Rate 47% Profit-Loss Ratio 0.98 Alpha -0.11 Beta 0.593 Annual Standard Deviation 0.118 Annual Variance 0.014 Information Ratio -1.536 Tracking Error 0.109 Treynor Ratio -0.046 Total Fees $26938.36 |
from System.Collections.Generic import List from QuantConnect.Data.UniverseSelection import * import decimal as d class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm): '''In this algorithm we demonstrate how to define a universe as a combination of use the coarse fundamental data and fine fundamental data''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2012,01,01) #Set Start Date self.SetEndDate(2015,01,03) #Set End Date self.SetCash(100000) #Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Daily self.UniverseSettings.Leverage = 2 self.coarse_count = 10 self.averages = { }; # this add universe method accepts two parameters: # - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction) # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # We are going to use a dictionary to refer the object that will keep the moving averages for cf in coarse: if cf.Symbol not in self.averages: self.averages[cf.Symbol] = SymbolData(cf.Symbol) # Updates the SymbolData object with current EOD price avg = self.averages[cf.Symbol] avg.update(cf.EndTime, cf.Price) # Filter the values of the dict: we only want up-trending securities values = filter(lambda x: x.is_uptrend, self.averages.values()) # Sorts the values of the dict: we want those with greater difference between the moving averages values.sort(key=lambda x: x.scale, reverse=False) # we need to return only the symbol objects list = List[Symbol]() for x in values[:self.coarse_count]: list.Add(x.symbol) return list # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): # liquidate removed securities for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # we want 20% allocation in each security in our universe for security in changes.AddedSecurities: self.SetHoldings(security.Symbol, 0.2) class SymbolData(object): def __init__(self, symbol): self.symbol = symbol self.tolerance = d.Decimal(1.01) self.fast = ExponentialMovingAverage(100) self.slow = ExponentialMovingAverage(300) self.is_uptrend = False self.scale = 0 def update(self, time, value): datapoint = IndicatorDataPoint(time, value) if self.fast.Update(datapoint) and self.slow.Update(datapoint): fast = self.fast.Current.Value slow = self.slow.Current.Value self.is_uptrend = fast > slow * self.tolerance if self.is_uptrend: self.scale = (fast - slow) / ((fast + slow) / 2)