Overall Statistics |
Total Trades 1469 Average Win 0.83% Average Loss -0.85% Compounding Annual Return 6.173% Drawdown 15.900% Expectancy 0.153 Net Profit 143.357% Sharpe Ratio 0.574 Probabilistic Sharpe Ratio 2.267% Loss Rate 42% Win Rate 58% Profit-Loss Ratio 0.98 Alpha 0.029 Beta 0.221 Annual Standard Deviation 0.079 Annual Variance 0.006 Information Ratio -0.201 Tracking Error 0.149 Treynor Ratio 0.206 Total Fees $8184.08 Estimated Strategy Capacity $580000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X |
""" ML Technical Algorithm for SPY with random signal generator and Kelly sizing @email: info@beawai.com @creation date: 25/11/2022 """ from AlgorithmImports import * import sklearn import numpy as np import pandas as pd pd.set_option('mode.use_inf_as_na', True) from sklearn.dummy import DummyClassifier from sklearn.model_selection import train_test_split class E2E(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) self.SetEndDate(2022, 11, 1) self.lookback = self.GetParameter("lookback", 21) self.resolution = Resolution.Daily self.ticker = "SPY" self.AddEquity(self.ticker, self.resolution) self.model = None self.kelly_size = 0 every_day = self.DateRules.EveryDay(self.ticker) self.Train(every_day, self.TimeRules.At(0, 0), self.train) self.Schedule.On(every_day, self.TimeRules.AfterMarketOpen(self.ticker, 0), self.trade) def train(self): """ Train model and calculate kelly position daily """ if self.model is None: self.model = DummyClassifier(strategy="uniform") # Random binary generator features, returns = self.get_data(252) # Use last year of data for training target = returns >= 0 # Up/Down binary target model_temp = sklearn.base.clone(self.model) x_train, x_test, y_train, y_test, r_train, r_test = \ train_test_split(features, target, returns, train_size=0.5, shuffle=False) model_temp.fit(x_train, y_train) y_pred = model_temp.predict(x_test) self.kelly_size = kelly_size(y_test, y_pred, r_test) # Calculate kelly position on test data self.kelly_size = np.clip(self.kelly_size, 0, 1) # Applies fractional kelly and clips between 0 and 1 self.model.fit(features, target) self.Debug(f"{self.Time} Training - Kelly: {self.kelly_size:.1%}\n") self.Plot("ML", "Score", self.kelly_size) def trade(self): """ Trades based on prediction at market open """ if self.model is None: return # Don't trade until the model is trained self.Transactions.CancelOpenOrders() x_pred = self.get_data(self.lookback, include_y=False) if len(x_pred) == 0: return y_pred = self.model.predict(x_pred)[0] position = y_pred * self.kelly_size # Sizing based on Kelly and individual probabilty self.Plot("ML", "Prediction", y_pred.mean()) self.Debug(f"{self.Time} Trading\tPos: {position:.1%}") self.SetHoldings(self.ticker, position) def get_data(self, datapoints, include_y=True): """ Calculate features and target data """ data = self.History([self.ticker], datapoints, self.resolution) features = data.eval("close/open - 1").to_frame("returns") x = pd.concat([features.shift(s) for s in range(self.lookback)], axis=1).dropna() # Sequence of last "lookback" returns if include_y: y = features["returns"].shift(-1).reindex_like(x).dropna() return x.loc[y.index], y else: return x def kelly_size(y_true, y_pred, returns): """ Calculate Kelly position based on the prediction accuracy """ trades = y_pred!=0 wins = y_true[trades]==y_pred[trades] win_rate = wins.mean() loss_rate = 1-win_rate avg_win = abs(returns[trades][wins].mean()) avg_loss = abs(returns[trades][~wins].mean()) return win_rate/avg_loss - loss_rate/avg_win