Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 6.421 Tracking Error 0.111 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# Highest Correlated Pair class HighestCorrelatedPair(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 5, 9) self.SetEndDate(2021, 5, 10) self.SetCash(10000) currencies = ['EURUSD', 'USDJPY', 'GBPUSD', 'USDCAD', 'AUDUSD', 'NZDUSD', 'EURJPY'] self.currencies = [self.AddForex(ticker, Resolution.Hour).Symbol for ticker in currencies] self.num_currencies = 2 self.HighestCorrelated = [] def OnData(self, data): history = self.History(self.currencies, 100, Resolution.Hour) returns = history.unstack(level = 1).close.transpose().pct_change().dropna() correl = returns.corr() selected = [] for index, row in correl.iteritems(): corr_rank = row.mean() selected.append((index, corr_rank)) self.HighestCorrelated = sorted(selected, key = lambda x: x[1])[-self.num_currencies:] self.Debug(self.HighestCorrelated)