Overall Statistics |
Total Trades 2280 Average Win 0.79% Average Loss -0.61% Compounding Annual Return 103.315% Drawdown 40.900% Expectancy 0.601 Net Profit 3842.072% Sharpe Ratio 2.564 Probabilistic Sharpe Ratio 92.346% Loss Rate 30% Win Rate 70% Profit-Loss Ratio 1.30 Alpha 0.943 Beta 1.897 Annual Standard Deviation 0.517 Annual Variance 0.268 Information Ratio 2.705 Tracking Error 0.416 Treynor Ratio 0.699 Total Fees $336699.39 Estimated Strategy Capacity $2700000.00 Lowest Capacity Asset SQQQ UK280CGTCB51 |
class HedgedEquityAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 7, 1) self.SetEndDate(2021, 9, 3) self.SetCash(1000000) self.AddEquity("SPY", Resolution.Minute) self.SetBenchmark("SPY") self.SetBrokerageModel(BrokerageName.AlphaStreams) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.Settings.FreePortfolioValuePercentage = 0.1 symbols_one_list = ["TQQQ"] self.symbols_one = [self.AddEquity(symbol, Resolution.Minute, Market.USA).Symbol for symbol in symbols_one_list] symbols_two_list = ["SQQQ"] self.symbols_two = [self.AddEquity(symbol, Resolution.Minute, Market.USA).Symbol for symbol in symbols_two_list] self.AddUniverseSelection(ManualUniverseSelectionModel(self.symbols_one)) self.AddUniverseSelection(ManualUniverseSelectionModel(self.symbols_two)) self.lookback = 65 self.SetWarmup(self.lookback) self.AddAlpha(LongEquityAlphaModel(self.symbols_one, self.Time, self.lookback)) self.AddAlpha(ShortEquityAlphaModel(self.symbols_two, self.Time, self.lookback)) def RebalanceFunction(self, time): return None class LongEquityAlphaModel(AlphaModel): def __init__(self, symbols, Time, lookback): self.symbols = symbols self.dataBySymbol = {} self.rebalanceTime = Time self.lookback = lookback def Update(self, algorithm, data): insights = [] if algorithm.Time < self.rebalanceTime: return [] for symbol, symbolData in self.dataBySymbol.items(): if data.Bars.ContainsKey(symbol) and symbolData.IsReady(): if symbol in self.symbols: if symbolData.slow.Current.Value < symbolData.fast.Current.Value: if not algorithm.Portfolio[symbol].IsLong: insights.append(Insight(symbol, timedelta(days=30), InsightType.Price, InsightDirection.Up)) else: if algorithm.Portfolio[symbol].IsLong: insights.append(Insight(symbol, timedelta(days=30), InsightType.Price, InsightDirection.Flat)) self.rebalanceTime = Expiry.EndOfDay(algorithm.Time) return insights def OnSecuritiesChanged(self, algorithm, changes): for change in changes.AddedSecurities: if change.Symbol not in self.symbols: continue else: self.dataBySymbol[change.Symbol] = SymbolData(algorithm, change.Symbol, self.lookback) for change in changes.RemovedSecurities: if change.Symbol not in self.symbols: continue else: if change.Symbol in self.dataBySymbol: del self.dataBySymbol[change.Symbol] class ShortEquityAlphaModel(AlphaModel): def __init__(self, symbols, Time, lookback): self.symbols = symbols self.dataBySymbol = {} self.rebalanceTime = Time self.lookback = lookback def Update(self, algorithm, data): insights = [] if algorithm.Time < self.rebalanceTime: return [] for symbol, symbolData in self.dataBySymbol.items(): if data.Bars.ContainsKey(symbol) and symbolData.IsReady(): if symbol in self.symbols: if symbolData.slow.Current.Value > symbolData.fast.Current.Value: if not algorithm.Portfolio[symbol].IsShort: insights.append(Insight(symbol, timedelta(days=30), InsightType.Price, InsightDirection.Down)) else: if algorithm.Portfolio[symbol].IsShort: insights.append(Insight(symbol, timedelta(days=30), InsightType.Price, InsightDirection.Flat)) self.rebalanceTime = Expiry.EndOfDay(algorithm.Time) return insights def OnSecuritiesChanged(self, algorithm, changes): for change in changes.AddedSecurities: if change.Symbol not in self.symbols: continue else: self.dataBySymbol[change.Symbol] = SymbolData(algorithm, change.Symbol, self.lookback) for change in changes.RemovedSecurities: if change.Symbol not in self.symbols: continue else: if change.Symbol in self.dataBySymbol: del self.dataBySymbol[change.Symbol] class SymbolData: def __init__(self, algorithm, symbol, lookback): algorithm.Consolidate(symbol, Resolution.Daily, self.DailyBarHandler) self.fast = algorithm.SMA(symbol, 5, Resolution.Daily, Field.Low) self.slow = algorithm.SMA(symbol, 60, Resolution.Daily, Field.High) history = algorithm.History(symbol, lookback, Resolution.Daily) if not history.empty: for index, tradebar in history.loc[symbol].iterrows(): self.fast.Update(index, tradebar.low) self.slow.Update(index, tradebar.high) last_row = history.loc[symbol].iloc[-1] self.open = last_row.open self.close = last_row.close self.high = last_row.high self.low = last_row.low def DailyBarHandler(self, consolidated): self.open = consolidated.Open self.close = consolidated.Close self.high = consolidated.High self.low = consolidated.Low def IsReady(self): return self.fast.IsReady and self.slow.IsReady