Overall Statistics |
Total Trades 5 Average Win 0.54% Average Loss 0% Compounding Annual Return 128.221% Drawdown 3.100% Expectancy 0 Net Profit 8.234% Sharpe Ratio 8.613 Probabilistic Sharpe Ratio 95.161% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.603 Beta 0.193 Annual Standard Deviation 0.135 Annual Variance 0.018 Information Ratio -6.021 Tracking Error 0.289 Treynor Ratio 6.023 Total Fees $0.00 |
class UniverseRollingAlgorithm(QCAlgorithm): def Initialize(self): #Initialize Dates, Cash, Equities, Fees, Allocation, Parameters, Indicators, Charts # Set Start Date, End Date, and Cash #------------------------------------------------------- self.SetTimeZone(TimeZones.NewYork) #EDIT: Added Timezon self.SetStartDate(2020, 4, 1) # Set Start Date self.SetEndDate(2020, 5, 5) # Set End Date self.SetCash(100000) # Set Strategy Cash #------------------------------------------------------- # Set Custom Universe #------------------------------------------------------- self.AddUniverse(self.CoarseSelectionFilter, self.FineSelectionFilter) self.UniverseSettings.Resolution = Resolution.Minute #Needs to change to Resolution.Minute once code works, leaving Daily for now to minimize data self.UniverseSettings.SetDataNormalizationMode = DataNormalizationMode.SplitAdjusted self.UniverseSettings.FeeModel = ConstantFeeModel(0.0) self.UniverseSettings.Leverage = 1 #------------------------------------------------------- self.SetBrokerageModel(BrokerageName.Alpaca, AccountType.Cash) #EDIT: Added Brokerage, appears to have set fees to zero self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(0, 0), self.UniEquityPicks) #EDIT: Added scheduled event to prevent universe from triggering at minute intervals self.init_uni_picks = True #Initialize flag only true once self.uni_picks = False #second flag to switch on/off self.EMA_Period_Fast = 20 self.EMA_Period_Slow = 50 self.__numberOfSymbols = 100 self.__numberOfSymbolsFine = 10 self.indicators = {} # Define Percentage Allocation #------------------------------------------------------- self.percentagebuy = 0.1 #------------------------------------------------------- def CoarseSelectionFilter(self, coarse): if self.uni_picks or self.init_uni_picks: sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # sort descending by daily dollar volume return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # return the symbol objects of the top entries from our sorted collection else: return Universe.Unchanged def FineSelectionFilter(self, fine): # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' if self.uni_picks or self.init_uni_picks: self.init_uni_picks = False #False for the rest of program operation self.uni_picks = False sortedByPeRatio = sorted(fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=False) # sort descending by P/E ratio self.universe = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] # take the top entries from our sorted collection return self.universe else: return Universe.Unchanged def OnSecuritiesChanged(self, changes): # Create indicator for each new security for security in changes.AddedSecurities: self.indicators[security.Symbol] = SymbolData(security.Symbol, self, self.EMA_Period_Fast, self.EMA_Period_Slow) for security in changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol, "Universe Removed Security") if security in self.indicators: del self.indicators[security.Symbol] # UNVERIFIED EDIT - Shifted del command outside of if statement, need to test def UniEquityPicks(self): self.uni_picks = True def OnData(self, data): #Entry Point for Data and algorithm - Check Data, Define Buy Quantity, Process Volume, Check Portfolio, Check RSI, Execute Buy/Sell orders, Chart Plots for symbol in self.universe: if not data.ContainsKey(symbol): #Tested and Valid/Necessary continue if data[symbol] is None: #Tested and Valid/Necessary continue if not symbol in self.indicators: #Tested and Valid/Necessary continue # Check for Indicator Readiness within Rolling Window #------------------------------------------------------- if not (self.indicators[symbol].fast_ema_window.IsReady and self.indicators[symbol].slow_ema_window.IsReady): continue #return #EDIT #self.Debug("Get Fast EMA = " + str(self.indicators[symbol].get_fast_EMA()) + " window[0] = " + str(self.indicators[symbol].fast_ema_window[0])) ''' if self.Time.hour == 10 and self.Time.minute == 0 and self.Time.minute < 2: self.Debug("Rolling Fast Index[0] = " + str(symbol) + "-EMA : " + str(self.indicators[symbol].fast_ema_window[0])) self.Debug("Rolling Slow Index[0] = " + str(symbol) + "-EMA : " + str(self.indicators[symbol].fast_ema_window[1])) self.Debug("Rolling Fast Index[4] = " + str(symbol) + "-EMA : " + str(self.indicators[symbol].fast_ema_window[2])) self.Debug("Rolling Slow Index[4] = " + str(symbol) + "-EMA : " + str(self.indicators[symbol].fast_ema_window[3])) self.Debug("Rolling Slow Index[4] = " + str(symbol) + "-EMA : " + str(self.indicators[symbol].fast_ema_window[4])) self.Debug(" ") ''' #Check time for live debugging checkhour = self.Time.hour checkminute = self.Time.minute #EXECUTE TRADING LOGIC HERE - self.buyquantity = round((self.percentagebuy*self.Portfolio.TotalPortfolioValue)/data[symbol].Close) if (not self.Portfolio[symbol].Invested) and (self.Portfolio.MarginRemaining > 0.9*self.percentagebuy*self.Portfolio.TotalPortfolioValue): if (self.indicators[symbol].fast_ema_window[1] >= self.indicators[symbol].slow_ema_window[1]) and (self.indicators[symbol].fast_ema_window[4] < self.indicators[symbol].slow_ema_window[4]): self.MarketOrder(symbol, self.buyquantity) #if self.Portfolio[symbol].Invested: #Remove if implementing Short Strategies if self.indicators[symbol].fast_ema_window[1] <= self.indicators[symbol].slow_ema_window[1] and (self.indicators[symbol].fast_ema_window[4] > self.indicators[symbol].slow_ema_window[4]): self.Liquidate(symbol) #self.MarketOrder(symbol, self.buyquantity) #elif self.EMA_FastWin[0] < self.EMA_SlowWin[0] and self.EMA_FastWin[1] > self.EMA_SlowWin[1]: # self.Liquidate(security.Key7 class SymbolData(object): rolling_window_length = 5 def __init__(self, symbol, context, fast_ema_period, slow_ema_period): self.symbol = symbol self.fast_ema_period = fast_ema_period self.slow_ema_period = slow_ema_period self.fast_ema = context.EMA(symbol, self.fast_ema_period, Resolution.Minute) #, fillDataForward = True, leverage = 1, extendedMarketHours = False) self.slow_ema = context.EMA(symbol, self.slow_ema_period, Resolution.Minute) #, fillDataForward = True, leverage = 1, extendedMarketHours = False) self.fast_ema_window = RollingWindow[float](self.rolling_window_length) self.slow_ema_window = RollingWindow[float](self.rolling_window_length) # Warm up EMA indicators history = context.History([symbol], slow_ema_period + self.rolling_window_length, Resolution.Minute) for time, row in history.loc[symbol].iterrows(): self.fast_ema.Update(time, row["close"]) self.slow_ema.Update(time, row["close"]) # Warm up rolling windows if self.fast_ema.IsReady: self.fast_ema_window.Add(self.fast_ema.Current.Value) if self.slow_ema.IsReady: self.slow_ema_window.Add(self.slow_ema.Current.Value) def get_fast_EMA(self): return self.fast_ema.Current.Value def get_slow_EMA(self): return self.slow_ema.Current.Value